
Measuring and Optimizing Patch
Management: an Open Model

Findings from the Project Quant patch management project

Securosis, L.L.C. 	 	 http://securosis.com

Version 1.0

Released: July 27, 2009

http://securosis.com
http://securosis.com

AuthorÕs Note
Securosis was approached by Jeffrey Jones of Microsoft in late 2008 to develop an open, independent patch

management metrics model. Unlike most of our research, Jeff (the sponsor) wanted to participate and contribute directly

to the project. To maintain objectivity, Microsoft participants agreed to follow the Totally Transparent Research process

and contribute all content in the open, just like any other member of the public.

To support the project we created a dedicated Project Quant landing site and forums. All research was produced in the

open, and no public comments were restricted or moderated (other than spam). All members of the public, and even the

vendor community, were invited to participate and contribute. We hope this process has removed any potential bias in

the model, and produced a truly objective, community-driven result.

Special thanks to Chris Pepper for editing and content support.

Contributors
This research was primarily conducted by Rich Mogull of Securosis and Jeffrey Jones of Microsoft.

The following individuals also contributed signiÞcantly to this report through comments on the Securosis blog and follow-

on review and conversations (listed by their display names from the Project Quant site, to protect privacy):

Daniel

DS

Mark

Amrit WIlliams

Dutch

Lonervamp

Additional contributors from non-public mailing lists or anonymous accounts can contact us for inclusion on this list in

future versions of the report.

The following organizations and communities assisted in promoting Project Quant research and survey efforts (without

paying for any promotional considerations or other Þnancial contributions):

• The Institute for Applied Network Security (IANS)

• BigFix

• Qualys

• Tenable Network Security

• The securitymetrics.org community

• The patchmanagement.org community

• The New School of Information Security

Copyright
This report is licensed under the Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 license.

http://creativecommons.org/licenses/by-nc-nd/3.0/us/

Securosis, L.L.C. 	 	 http://securosis.com

http://securosis.com/about/totally-transparent-research
http://securosis.com/about/totally-transparent-research
http://securosis.com/projectquant
http://securosis.com/projectquant
http://www.ianetsec.com/
http://www.ianetsec.com/
http://bigfix.com
http://bigfix.com
http://qualys.com
http://qualys.com
http://www.tenablesecurity.com
http://www.tenablesecurity.com
http://securitymetrics.org/content/Wiki.jsp
http://securitymetrics.org/content/Wiki.jsp
http://patchmanagement.org/
http://patchmanagement.org/
http://newschoolsecurity.com
http://newschoolsecurity.com
http://creativecommons.org/licenses/by-nc-nd/3.0/us/
http://creativecommons.org/licenses/by-nc-nd/3.0/us/
http://securosis.com
http://securosis.com

Project Quant Executive Summary

Developing an Open Patch Management Metrics

Model
This report includes the findings of the Project Quant patch management research

project. Project Quant is dedicated to the development of a refined, unbiased

patch management metrics model. Our goal is to provide organizations with a tool

to better understand their patching costs, and to guide improvements through an

operational efficiency model capable of capturing accurate and precise

performance metrics. Project Quant was developed through independent

research, community involvement, and an open industry survey.

Key Findings
• There is no public platform-independent, industry-standard patch management

process framework. As a result, Project Quant developed a superset framework

to encompass most patching activities within any organization, regardless of technology assets under review. It

includes ten phases with forty steps.

Based on survey responses, organizations are generally mature in terms of managing desktop and server operating

system patches, but process maturity quickly falls off for other technologies and platforms.

• Staff time dedicated to patch management activities represents the majority of patch management costs, and thus the

model was designed to focus heavily on granular patching activities.

• Patching across multiple platforms and business activities is a very complex process, and although the Project Quant

model is extremely detailed, most organizations should focus on their key metrics, identified through the model.

Summary and Next Steps
•This release includes a detailed patch management process

framework and metrics model to enable organizations to

quantify and optimize their patch management processes.

•This is Version 1.0 of the model; future work will continue

refinement, add sample use cases, and assess its functionality

in various user environments.

•The next step is to interview end-user organizations to

determine how their processes and maturity align with the

model and survey results.

•The model can then be adapted for industry benchmarking.

Securosis, L.L.C. 	 	 http://securosis.com

The Project Quant

Survey
Project Quant conducted an

open, industry-wide survey. 100

organizations responded, repre-

senting a broad range of or-

ganizations from under 10 to

over 100,000 employees. The

survey results and raw data (for

your own analysis) are available

at the Project Quant site.

The Patch Management Cycle

http://securosis.com
http://securosis.com
http://securosis.com/projectquant/
http://securosis.com/projectquant/

Table of Contents

Introduction! 1

An Intractable Problem! 1

Project Quant DeÞnitions and Goals! 2

Problem Definition
 2

Objective
 2

Additional Detail
 2

Assumptions, Process, Status, and Background! 2

Research Process
 3

Project Status
 3

The Patch Management Process! 4

The Patch Management Cycle! 4

Patch Cycle Phases
 5

Shielding and Workarounds
 5

The Deploy Through Clean Up Sub-Cycle
 6

Detailed Phases! 7

Introduction! 7

Monitor for Release/Advisory! 8

Securosis, L.L.C.

Project Quant: Measuring and Optimizing Patch Management — an Open Model
 i

Evaluate! 10

Acquire! 12

Prioritize and Schedule! 13

Test and Approve! 14

Create and Test Deployment Package! 16

Deploy! 17

ConÞrm Deployment! 18

Clean Up! 19

Document and Update ConÞguration Standards! 20

The Metrics Model! 21

Introduction! 21

How to Use the Model
 21

DeÞne the Asset Type (or Program)! 22

DeÞne Roles! 22

Determine Non-Phase Program Costs! 23

Determine Individual Phase Costs ! 23

Phase 1: Monitor for Release/Advisory
 24

Step 1: Identify Asset Types! 24

Step 2: Identify Advisory Sources! 24

Step 3: Monitor for Advisories ! 24

Phase 2: Evaluate
 24

Step 1: Match to Asset Type! 24

Securosis, L.L.C.

Project Quant: Measuring and Optimizing Patch Management — an Open Model
 ii

Step 2: Determine Nature! 25

Step 3: Determine Relevance and Priority! 25

Step 4: Determine Dependencies ! 25

Step 5: Workarounds and Shielding! 26

Phase 3: Acquire
 26

Step 1: Locate! 26

Step 2: Acquire! 26

Step 3: Validate! 26

Phase 4: Prioritize and Schedule
 27

Step 1: Prioritize! 27

Step 2: Match to Assets! 27

Step 3: Schedule! 27

Phase 5: Test and Approve
 28

Step 1: Develop Test Criteria! 28

Step 2: Test! 28

Step 3: Analyze Results! 28

Step 4: Approve! 29

Test/Analyze Cycle! 29

Phase 6: Create and Test Deployment Package
 29

Step 1: Identify Deployment Tool! 29

Step 2: Consolidate Patches! 29

Step 3: Build Deployment Package! 29

Securosis, L.L.C.

Project Quant: Measuring and Optimizing Patch Management — an Open Model
 iii

Step 4: Test Deployability! 30

Step 5: Test Functionality! 30

Step 5: Approve Package! 30

Test/Analyze Cycle! 30

Phase 7: Deploy
 30

Step 1: Prepare! 30

Step 2: Deliver! 31

Step 3: Install! 31

Step 4: Clean Up! 31

Phase 8: Confirm Deployment
 31

Step 1: Test Deployment! 31

Step 2: Test Functionality! 32

Step 3: Document! 32

Phase 9: Clean Up
 32

Step 1: Identify Failed Deployments ! 32

Step 2: Determine Deployment Failure Cause! 32

Step 3: Adjust Deployment Parameters ! 33

Step 4: Re-Deploy! 33

Phase 10: Document
 33

Step 1: Document Patch Deployment! 33

Step 2: Determine and Document ConÞguration Standard Changes ! 33

Step 3: Approve ConÞguration Standard Changes! 34

Securosis, L.L.C.

Project Quant: Measuring and Optimizing Patch Management — an Open Model
 iv

Program Metrics! 34

The Center for Internet Security’s Consensus Metrics
 34

Combine and Analyze Costs! 34

Adapting the Model for Measuring a Complete Program! 35

Full Evaluation! 35

Key Metrics Evaluation! 35

The Costs of Maintenance Windows and Predictable Patches! 36

Conclusions and Next Steps! 38

Patch Management Is Still DifÞcult... Mostly! 38

Next Steps! 38

Who We Are! 40

About the Authors ! 40

Securosis, L.L.C.

Project Quant: Measuring and Optimizing Patch Management — an Open Model
 v

Introduction

An Intractable Problem
Patch management is not only one of the single most important and frequent activities in any information technology

organization, it’s also one with which we have decades of practice and advancement. Yet despite our extensive collective

experience, IT managers frequently cite patch management as one of their primary concerns in terms of costs, efficiency,

and effectiveness. While information is often available on techniques for patching specific platforms, very little detailed

work on overall patch management processes and efficiencies is publicly available. Given its far-reaching impact on

security, reliability, compliance, and performance, it’s astounding how immature the practice actually is. We, as a

community, lack the detailed frameworks, models, and performance metrics we need to understand if we’re managing

patches appropriately, using an optimal process.

This is largely due to the scope of the problem; patch management affects every single tool in the technology arsenal —

from our most critical servers down to the phones in our pockets. Each platform comes with its own set of requirements,

procedures, processes, and dependencies. Even the philosophical predilections of the product vendor affect how we

manage their software or hardware. While some areas are more or less mature, and a variety of first and third party

solutions are available to help with different aspects of patch management, organizations lack independent frameworks

and metrics to help them determine if they are doing an effective job, or where they can improve their processes.

Although it’s impossible to completely standardize patch management across the entire spectrum of industries,

organizations, and technologies, Project Quant was established to assist organizations in better understanding and

optimizing their processes. The initial goal of the project was to build a basic metrics model, but it has since expanded to

include a full patch management framework, detailed metrics, and an open survey to better understand the current

maturity of patching processes.

By providing a detailed performance metrics model we hope to help organizations improve their internal processes, as

well as improve overall efficiency and effectiveness. The model should help identify specific areas of inefficiency, and

guide users towards specific improvements. Project Quant is also a quantified cost model, and provides a way to

measure patch management costs in different areas across their entire programs. We have used surveys and interviews

to inform and support our findings, and (as with the model) all data is being made completely public. We hope this helps

organizations better understand the state of patching in the industry, and where they fit in terms of maturity.

It’s time to remove the guesswork, begin understanding the real costs of patch management decisions, and provide the

open frameworks, models, metrics, and data to optimize our processes.

Project Quant is an ongoing project, and although this document reflects the current state of the research, it should still

be considered a work in progress. We will update and re-release this report as the model, surveys, and other findings

evolve.

Securosis, L.L.C.

Project Quant: Measuring and Optimizing Patch Management — an Open Model
 1

Project Quant DeÞnitions and Goals
We established the following goals when we launched the project:

Problem DeÞnition
Based on our research, there is no independent, objective model to measure the costs of patch management, nor any

comprehensive proprietary models. There are also no operational efficiency models/metrics to assist organizations in

optimizing their patch management processes. Finally, in general, the security industry lacks operational metrics models

as seen in other areas of IT and business.

Objective
The objective of Project Quant is to develop a cost model for patch management that accurately reflects the financial and

resource costs associated with the process of evaluating and deploying software updates (patch management).

Additional Detail

As part of maintaining their technology infrastructure, all organizations deploy software updates and patches. The goal of

this project is to provide a framework for evaluating the costs of patch management, while providing information to help

optimize the associated processes. The model should apply to organizations of different sizes, circumstances, and

industries. Since patch management processes vary throughout the industry, Project Quant will develop a general model

that reflects best practices and can be adapted to different circumstances. The model will encompass the process from

monitoring for updates to confirming successful rollout, and should apply to both workstations and servers. The model

should be unbiased and vendor-neutral. Ideally, the model should also help advance the field of information technology

metrics, particularly information security metrics.

Assumptions, Process, Status, and Background
Microsoft contacted Securosis to develop an open patch management metrics model. One of the primary goals was to

involve the larger community in order to create an effective, accurate, and unbiased model.

Early on we established certain parameters to achieve the project goals, as well as some background assumptions:

¥ This should be a quantiÞed metrics model, focused on costs: All the metrics or variables in the model should be

measurable with accuracy and precision. “Qualified” metrics, such as risk and threat ratings, are not included. This

model is designed only to measure the costs of patch management, and to identify operational efficiencies or

deficiencies in specific process areas. It relies on measurable, quantifiable inputs, rather than assessments or other

qualified values based on human judgement.

¥ The model should apply to all potential patching activities and asset types: The model was developed to apply to any

asset — from fixed hardware like multifunction printers, to desktops, to major application servers. Due to this design,

certain portions of the model will need to be tuned, or even dropped, depending on the specific patching activity under

consideration.

¥ The model should apply to organizations of any size or vertical: The model is not designed only for large organizations

in particular vertical markets. Although smaller organizations work with fewer resources and different processes, the

model will still provide a functional framework.

¥ The model thus represents a superset of patching activities: To achieve the dual goals of applying to any potential

patching activity, and to organizations of differing sizes and verticals, the model was designed as a superset of any one

organization’s patching activities. We do not expect all users to utilize all portions of the model, and you are

encouraged to adapt the model for your own particular needs.

Securosis, L.L.C.

Project Quant: Measuring and Optimizing Patch Management — an Open Model
 2

¥ The model will not be limited to only security patches: The model should apply to general patches, not just security

patches.

¥ The model cannot measure the costs of not patching: Clearly, the easiest way to reduce your patching costs to zero is

to avoid patching. While there are many potential ways to measure the business impact of not patching, they are not

part of this model. In this phase of Project Quant we are concerned only with measuring the costs when you do patch.

In large part this is due to our strict focus on quantified metrics; addressing the impact of not patching would require

us to include predictive and more subjective elements.

¥ While the model can measure total program costs, it is focused on measuring patching for single asset types: Since

there is such a high degree of patching variability within organizations, if we focused on measuring total costs

throughout the organization, we would have to reduce the number and quality of variables under consideration. We

instead decided to focus the model on measuring patching costs for specific asset types and platforms, such as

workstation operating systems, specific database management systems, and so on. When used for a particular

platform, the model should provide reasonably accurate results. At the same time, we recognize the value of

measuring the costs for an entire patching program, and have identified key metrics to support this. While this

approach isn’t as refined, and the inputs won’t have the same degree of precision or accuracy, it should still provide

useful information.

¥ The model should break out costs by process to support optimization: One reason for the extensive detail included on

the patch management process is to support identification of specific operational efficiencies or problems. Our goal is

to help organizations identify, and then correct, problem areas. For example, the model will help identify reasons for

failed patch deployments requiring more effort, or managerial/sign off problems due to unresponsive personnel.

¥ Not all users will use all parts of the model: This is a complex detail-oriented model that could cost more than patching

itself if it’s manually completed with full detail. We purposely erred on the side of greater specificity, with the full

understanding that very few users will dig in at such a low level. We strongly encourage you to adapt the model to your

own needs, and have identified key metrics to assist with prioritization. Over time we hope that more and more of

these metrics will be obtainable through automation and inclusion in support tools.

Research Process
All materials are being made publicly available throughout the project, including internal communications (the Totally

Transparent Research process). The model was developed through a combination of primary research, surveys, focused

interviews, and public/community participation. Survey results and interview summaries will be posted on the project site,

but certain materials may be anonymized to respect the concerns of interview subjects. All interviewees and survey

participants are asked if they wish their responses to remain anonymous, and details are only released with consent.

Securosis and Microsoft use existing customers and contacts for focused interviews and surveys, but also release public

calls for participation to minimize bias due to participant selection.

Project Status
This document represents version 1.0 of the model. It includes the detailed patch management cycle and framework,

initial identification of key metrics, and a first pass at relating the metrics.

We have also completed the initial Open Patch Management Survey. Some of those results are included in this report,

and a full survey analysis and the raw data are being released separately.

This version of the model does not include a detailed spreadsheet tool or use cases. Our goal is to complete those with

ongoing work. We encourage anyone interested in participating visit the Project Quant site.

Securosis, L.L.C.

Project Quant: Measuring and Optimizing Patch Management — an Open Model
 3

http://securosis.com/projectquant/introducing-project-quant/
http://securosis.com/projectquant/introducing-project-quant/
http://securosis.com/projectquant/introducing-project-quant/
http://securosis.com/projectquant/introducing-project-quant/
http://securosis.com/projectquant
http://securosis.com/projectquant

The Patch Management
Process

The Patch Management Cycle
During our initial research we were unable to find any documented patch management processes that met the needs of

Project Quant. Existing processes were either too high-level or specific to a limited number of technology platforms, and

couldn’t support the detailed metrics we required to meet the project goals. Thus we developed a new process

framework, starting with a high-level cycle, and then detailed steps for each phase of the process.

This cycle represents a superset of potential patch management activities across any technology platform. Not all

organizations follow each step in this exact order, but we feel this captures most of the potential patch management

phases in sufficient detail and a relatively intuitive order.

Monitor for
Release/Advisory!

Evaluate!

Acquire!

Prioritize and
Schedule!

Test and Approve!

Create and Test
Deployment

Package!

Deploy!

ConÞrm
Deployment!

Clean Up!

Document/Update
ConÞguration

Standards!

Shield/
Workaround!

Securosis, L.L.C.

Project Quant: Measuring and Optimizing Patch Management — an Open Model
 4

Patch Cycle Phases
1. Monitor for Release/Advisory: Identify the asset types (platforms) you need to maintain, identify patch sources for

those platforms, and then monitor on an ongoing basis for new patch releases. Since asset types, patch sources,

and the patches themselves are changing on a constant basis; it’s important to follow an ongoing process.

2. Evaluate: Perform the initial evaluation of the patch to determine if it applies within your organization, what type of

patch it is, and if it’s relevant to your environment. This is the initial prioritization phase to determine the nature of the

patch (e.g., security fix vs. reliability improvement), its relevance and general priority for your organization, and any

possible shielding or workarounds. (Shielding/workaround is a separate process outside this model, but would be

initiated during this phase).

3. Acquire: Locate the patch, acquire it, and validate the integrity of the patch files. Since most patches are

downloaded these days, this is to ensure the download completed properly, but could also apply to patches on

physical media.

4. Prioritize and Schedule: Prioritize based on the nature of the patch itself and your infrastructure/assets. Then build

out a deployment schedule based on your prioritization, scheduled maintenance windows, and other factors. This

usually involves the participation of multiple stakeholders, ranging from application and system owners, to business

unit representatives if any downtime or feature-change training is involved.

5. Test and Approve: Develop test criteria, perform any required testing, analyze the results, and approve the patch

for release once it meets your requirements. Testing should include patch installation, operation, and performance.

6. Create and Test Deployment Package: Identify the proper deployment tool, consolidate patches and build a

deployment package, then test that package for deployment, installation, operation, and performance. Based on

your earlier scheduling you may be combining a variety of patches for the same platform into a single package, such

as application and operating system patches for a desktop.

7. Deploy: Prepare the target assets for deployment, deliver the patch, install, and then clean up any patch residue

such as temporary files.

8. ConÞrm Deployment: Verify that patches were properly deployed, including successful installation and operation.

This might include use of configuration management or vulnerability assessment tools.

9. Clean Up: Identify any failed deployments, determine the reason for the failure, adjust the deployment parameters,

and reinstall the patch or deployment package. It’s rare to have a patch rollout without any failures, particularly when

deploying to multiple simultaneous assets (like desktops) as opposed to a single update on a single server.

10. Document and Update ConÞguration Standards: Document the patch deployment, which may be required for

regulatory compliance, and update any associated configuration standards/guidelines/requirements. Since updates

to a new version may change all your configuration standards, it’s important to both document the patch installation

and then update your standards.

Shielding and Workarounds
For many patches, especially security updates, you may need to employ workarounds or implement tactical security

controls (shielding). For example, if there’s a new vulnerability in a database server that allows unauthenticated remote

code execution over a network port, your first step will be to block that at the network. If a feature of your application

server is behaving inappropriately, you may employ some sort of a functionality workaround, such as a scheduled batch

process to clean up temporary files or incorrect database entries.

Shielding and workarounds are critical to any effective patch management process, since even when a patch is available,

you may not be able to install it immediately due to testing requirements, scheduling downtime, or a simple lack of

resources.

Securosis, L.L.C.

Project Quant: Measuring and Optimizing Patch Management — an Open Model
 5

During the research phase of this project we determined that, while shielding and workarounds are a critical adjunct to

patch management, determining detailed metrics was beyond the scope of this project. With such high variability —

having to account for everything from a simple firewall rule change to complex structural application changes — shielding

and workarounds come with their own sets of processes and costs. We consider this a high priority area for future

research, even though it is beyond the scope of Project Quant.

The Deploy Through Clean Up Sub-Cycle
Even when deploying patches on a single system, it’s extremely common to encounter situations resulting in installation

or operation failure. This problem is exacerbated with larger deployments involving anything from a few dozen, to

hundreds of thousands of systems. We’ve represented this with a sub-cycle covering deployment, confirmation, and

clean up, and costs vary based on the number of cycles to achieve complete deployment.

You might also encounter other situations forcing you to break out of the cycle and repeat steps. For example, if the

vendor provides a bad patch and you identify problems during testing, you’ll need to repeat back from the beginning of

the cycle. If that same patch passes testing, but breaks functionality during deployment, you’ll need to repeat more

phases, and deal with the associated costs.

Since failed deployment is fairly common, we formalized it as a sub-cycle. The other cases generally occur far less often

and are far less predictable, so we didn’t include them in the model. If you have a vendor that consistently provides bad

patches, or you encounter other failures on a regular basis, you can adjust the cycle and the model to account for these

costs.

Securosis, L.L.C.

Project Quant: Measuring and Optimizing Patch Management — an Open Model
 6

Detailed Phases

Introduction
For each phase in the patch management cycle, we developed a series of steps — each with specific variables to feed

the model. In this section we will describe each of the phases at a macro level, while in the next section we will call out

the variables in more detail.

These steps should encompass the vast majority of potential patch management activities, and many of the key

variables. Although the variables listed in this section of the report correlate directly to the metrics portion of the model,

they are not presented with the same level of detail for space and brevity’s sake. Although still fairly detailed, these are

generalized variables included more to provide a sense of the factors involved in each step than to precisely represent the

in-depth metrics of a phase. Please see the corresponding phases in the metrics portion of the model for specific metrics

and identification of key metrics.

In most cases the variables are in terms of staff hours (for a single step) or FTEs (for an ongoing activity).

Securosis, L.L.C.

Project Quant: Measuring and Optimizing Patch Management — an Open Model
 7

Monitor for Release/Advisory
The three steps in this phase are to identify asset types, identify sources for the advisory, and put a monitoring process in

place. We define an advisory as notification that a patch for a platform is available.

Identify asset
types!

¥!Man hours to
initially identify
asset types
requiring patch
management.!

¥!Man hours to
maintain asset
type list.!

¥!Variables:
number of
asset types,
time to
identify,
accuracy of
asset list/
database, time
to update,
frequency of
updating.!

Identify sources!

¥!Man hours to
identify
sources for
advisories.!

¥!Man hours to
validate/
maintain
sources as
asset types
change.!

¥!Variables: asset
types, source
types, time to
update,
frequency to
update.!

Monitor for
advisories!

¥!FTEs for
ongoing
monitoring for
advisories and
patch releases.!

¥!Variables:
number of
sources, time
per source.!

1. Identify asset types: Before you can monitor for potential advisories, you need to identify all the asset types

(platforms) that require patches. There are two sub-steps — first any initial identification activity if you don’t already

have an asset type list, and second maintaining that list over time. For some platforms, such as certain server

applications, a single asset may compromise an entire asset type. A highly-customized asset of a particular type may

also be considered an entirely new asset type if it requires special handling (e.g., a legacy server beyond normal

maintenance and support).

2. Identify advisory sources: After identifying which asset types you need to maintain, you then need to identify

potential sources for advisories. In most cases this will be the software vendor, but any given vendor may release

advisories through a variety of channels. There is also effort to keep this list up to date and matched to any changes in

your asset types.

3. Monitor for advisories: This is the ongoing process of monitoring your various sources for any updates. It varies

greatly for different asset types and software providers, and is likely to be broken out by who is responsible for the

various assets.

We developed a generalized list of advisory sources for the Project Quant survey, and the chart below shows the

responses:

Securosis, L.L.C.

Project Quant: Measuring and Optimizing Patch Management — an Open Model
 8

A number of respondents also cited the OSVDB as a data source.

0% 20% 40% 60% 80%

Vendor email lists

Vendor blogs
Internal software notifications

Third party email lists (paid subscription)

Third party email lists (free)
Third party services (managed services)

Third party tool (e.g., a patch management tool with feed)
Media/news

CVE/NVD

US-CERT advisories
Information Assurance Vulnerability Messages

Information Security Vulnerability Messages
None

Do not know

Securosis, L.L.C.

Project Quant: Measuring and Optimizing Patch Management — an Open Model
 9

Evaluate
This phase includes the initial evaluation of an advisory in order to determine relevance, initial priority, and general nature.

This is also the phase where any potential shielding or workaround processes are initiated. It includes five steps:

Match to asset
type!

¥!Man hours to
determine if
patch applies to
any existing
assets.!

¥!Variables:
accuracy of
asset list, time
to match,
number of
assets affected
by patch,
number of
patches in patch
set.!

Determine nature!

¥!Man hours to
classify the
nature of the
patch: e.g.,
security, feature
upgrade, general
bug Þx,
reliability
improvement.!

¥!Variables:
completeness of
documentation,
time to
evaluate,
number of
patches in patch
set.!

Determine
relevance/priority!

¥!Man hours to
prioritize based
on asset type
usage and patch
nature.!

¥!Variables: time
to evaluate,
completeness of
patch
documentation,
completeness of
asset
documentation,
completeness of
asset to asset
type list, number
of patches in
patch set.!

Determine
dependencies!

¥!Man hours to
determine if
additional
patches are
required to
deploy the
patch, or if the
patch will break
production
systems due to
dependencies.!

¥!Variables: time
to evaluate,
completeness of
asset list,
completeness of
patch
documentation,
number of
dependencies,
number of
patches in patch
set.!

Workarounds and
Shielding!

¥!Man hours to
determine
potential
workarounds
and/or to
engage security
shielding
process.!

¥!Variables: time
to evaluate,
completeness of
workaround/
shielding
documentation,
need for
workaround/
shield (binary),
number of
patches in patch
set, number of
assets of
affected type to
evaluate.!

1. Match to asset type: When an advisory is released, the first step is to determine if it matches any of your asset types.

The speed of this process clearly varies based on how up to date your asset type list is, the documentation quality of

the advisory, and how many platforms are covered by the advisory. This is why it’s important to have an up to date list

of asset types with current version numbers. Also, don’t assume that all assets of that type are at the current version,

especially when dealing with servers and applications.

2. Determine nature: Most organizations manage different types of patches differently. A security patch may initiate a

rapid response process, while general feature improvements and bug fixes are managed more slowly.

3. Determine relevance and priority: Now that you know if the patch matches a platform in your environment, and the

nature of the patch, you can determine its initial priority. This may also vary based on the importance of particular

assets, not merely whether or not they exist in your environment. For example, a medium priority update (per the

vendor’s definition) with a bug fix may be a high priority update if it’s for a critical server experiencing ongoing

performance issues.

4. Determine dependencies: Many patches require certain dependencies to function properly, and these aren’t always

included in the issued patch, particularly on servers. The amount of time required to determine any dependencies will

depends on the quality of documentation and any asset and asset types lists.

5. Workarounds and shielding: As discussed in the previous section, workarounds and shielding are a critical part of

an effective patch management process. In this step, determine any potential workaround and/or shielding

requirements, then kick off separate processes (outside the scope of this model) to implement such options.

Securosis, L.L.C.

Project Quant: Measuring and Optimizing Patch Management — an Open Model
 10

A number of roles are typically involved in evaluating patches, ranging from security to system owners. The chart below

from the Project Quant survey shows the roles involved in respondent organizations when evaluating a patch for possible

deployment:

0% 15% 30% 45% 60%

Security

Network operations

Workstation/systems administration

Application owners (including DBAs)

General IT management (e.g., CIO)

All/some of the above, depending on the involved software

Do not know

Securosis, L.L.C.

Project Quant: Measuring and Optimizing Patch Management — an Open Model
 11

Acquire
While it can be simple, acquiring a patch still involves multiple steps:

Locate!

•! Man hours
to find the
patch/patch
set.!

•! Variable:
time to find
the patch.!

Acquire!

•! Man hours
to download
or otherwise
obtain the
patch.!

•! Variables:
time to
acquire.!

Validate!

•! Man hours
to validate
that patch
was
downloaded/
acquired
properly.!

•! Variables:
time to
validate.!

1. Locate: Determine the location of the patch/set. This may involve access to a subscription-only support site, or even

physical media.

2. Acquire: Download or otherwise obtain the patch.

3. Validate: Determine that the patch was acquired properly — for example, by checking its hash against a published

hash.

Most patches today are downloaded, but there are still occasions where physical media are used. Also, the current

status of any maintenance or support licenses, and tracking down the license holder and patch acquisition method, can

add considerable costs to this phase of the process if not managed well.

Securosis, L.L.C.

Project Quant: Measuring and Optimizing Patch Management — an Open Model
 12

Prioritize and Schedule
This phase includes three steps to complete prioritization of the patch, match it to existing assets, and schedule

deployment.

Prioritize!

•! Man hours to
analyze and
prioritize the
patch.!

•! Variables:
number of
patches in patch
set, number of
asset types
covered in patch
set, percentage
of asset types in
asset type list,
completeness of
patch
documentation,
completeness of
asset type usage
(importance)
documentation.!

Match to Assets!

•! Man hours to
match the patch
to assets.!

•! Variables:
number of
patches in patch
set, number of
asset types
covered, number
of assets of type,
percentage of
assets in
inventory list,
accuracy of asset
location list.!

Develop Schedule!

•! Man hours to
develop the
deployment
schedule.!

•! Man hours to
integrate into
maintenance
windows.!

•! Variables:
number of
patches in patch
set, number of
asset types
covered, number
of assets of type,
percentage of
assets in
inventory list,
accuracy of asset
location list.!

1. Prioritize: Determine the overall priority of the patch. This will often involve multiple teams, especially for security

related patches. Priority is usually a combination of factors, including the criticality of the patch, availability of mitigating

options (workarounds/shielding), business needs or constraints, and importance of assets covered by the patch. The

costs involved vary based on the quality of patch and asset documentation. For example, a highly critical database

security flaw may translate into a lower priority for deployment if the specific configuration of the database server is less

vulnerable, the server is of low importance, or it is highly protected with alternative security controls.

2. Match to assets: After determining the overall priority of the patch, match it to specific assets to determine

deployment priorities. This will directly affect the deployment schedule. Again, poor documentation of assets will result

in higher analysis costs.

3. Develop the schedule: Now that the priority of the patch is established and matched to specific assets, build out the

deployment schedule. As with the other steps, the quality of documentation is extremely important. The schedule also

needs to account for any maintenance windows, and may involve multiple stakeholders as it is coordinated with

business units or application/platform owners.

Securosis, L.L.C.

Project Quant: Measuring and Optimizing Patch Management — an Open Model
 13

Test and Approve
This phase is more complex, depending on the degree of testing performed, which also varies greatly based on asset

and asset type. It consists of four steps with a sub-cycle to account for different test cases and failed tests:

Develop Test
Criteria!

¥!Man hours to
develop
patch-speciÞc
test criteria.!

¥!Variables:
number of
patches in
patch set,
number of
asset types
covered by
patch,
completeness
of existing
test criteria,
number of
dependencies
of assets/asset
types (number
of test cases
for patch:
hardware,
software,
services), !

Test!

¥!Man hours to
test the patch
for
deployment.!

¥!Variables:
number of
patches in
patch set,
number of
asset types to
test,
availability of
test
environment,
number of
cases to test.!

Analyze Results!

¥!Man hours to
analyze the
results.!

¥!Variables: time
to analyze,
number of
patches,
number of
dependencies.!

Approve!

¥!Man hours to
achieve and
document
approval.!

¥!Variables:
number of
approvers
required, time
to approve,
time to
document
approval.!

¥!Man hours to
re-test!

¥!Variables:
number of
failed tests,
time to adjust
test criteria
or Þx.!

1. Develop test criteria: Determine the specific testing criteria for the patches and asset types. These should include

installation, operation, and performance. The depth of testing varies, depending on the value of the platform and the

nature of the patch. For example, test criteria for a critical server/application environment might be extremely detailed

and involve extensive evaluation in a lab. Testing for a non-critical desktop application might be limited to installation on

a standard image and basic compatibility/functionality tests.

2. Test: The process of performing the tests.

3. Analyze results: Review the test results. In most cases, you will also want to document the results in case of

problems later.

Securosis, L.L.C.

Project Quant: Measuring and Optimizing Patch Management — an Open Model
 14

4. Approve: Formally approve the patch for deployment. This often involves multiple individuals from different teams, and

the time to gain approval may be a cost factor.

This phase also includes another sub-cycle if additional testing is needed due to a failed test, or a test that reveals other

issues. This may involve adjusting the test criteria, testing environment, or other factors to achieve a successful outcome.

There are a number of other factors that affect testing costs and effectiveness. The availability of proper test

environments and tools is obvious, but proper documentation of assets, especially servers and applications with complex

dependencies and functional requirements, is also clearly important.

Securosis, L.L.C.

Project Quant: Measuring and Optimizing Patch Management — an Open Model
 15

Create and Test Deployment Package
While some patches are deployable out of the box or manually, others need to be built into deployment packages for

distribution. Organizations use a wide variety of deployment tools to distribute patches, each with different requirements

and capabilities. In these six steps we identify the proper tool, build the deployment package (if needed), and test the

package for expected behavior. Not all patches involve deployment tools, so this phase might be completely skipped for

manual deployments.

Identify
Deployment Tool!

¥! Man hours to identify the deployment tool for the asset type/assets.!
¥! Variables: number of asset types covered by patch, number of assets of types, number of deployment tools,

number of assets covered by deployment tool, completeness of asset type list, completeness of asset list,
completeness of asset conÞguration list, completeness of deployment tool documentation.!

Consolidate
Patches!

¥! Man hours to consolidate multiple patches or patch sets for a given asset type (platform) or conÞguration.!
¥! Variables: number of patches in patch set, number of patches in patch cycle for given asset type, time to

consolidate patches.!

Build Deployment
Package!

¥! Man hours to build deployment package.!
¥! Variables: number of patches for deployment package, time to create package.!

Test Deployability!

¥! Man hours to test whether the package deploys properly.!
¥! Variables: completeness of test environment, time to deploy, time to test successful deployment, number of

patches in deployment package, number of cases to test, time to test, time to analyze results.!

Test Functionality!

¥! Man hours to test that deployed patches function as expected.!
¥! Variables: number of patches in deployment package, number of asset types to test, completeness of test

environment, number of cases to test, time to test, time to analyze results.!

Approve Package!

¥! Man hours to approve package.!
¥! Variables: number of sign offs required for approval, time to obtain sign off.!

¥!Man hours to
re-test!

¥!Variables:
number of
failed tests,
time to adjust
test criteria
or Þx.!

1. Identify deployment tool: Determine which tool (or tools) will be used to deploy the patch. Usually this is based on

platform, but there are often exceptions, especially for servers and multi-patch bundles.

2. Consolidate patches: Pull together individual patches that will be bundled into a single deployment.

3. Build deployment package: Create the deployment package. The effort/cost of this task varies based on the tools

involved, platforms covered, number of patches, and overall complexity.

4. Test deployability: Using the deployment tool, install the package on test systems to confirm it deploys properly.

5. Test functionality: Make sure the patch still functions correctly. This is not as in-depth as testing in the Test and

Approve phase, but is to confirm that the patch still functions properly after being deployed in a package.

6. Approve package: Gain formal approval to proceed with deployment.

As with the other phases that involve testing, there is a sub-cycle if any of the tests fail.

Securosis, L.L.C.

Project Quant: Measuring and Optimizing Patch Management — an Open Model
 16

Deploy
There are four steps to deploy a patch, which include preparing the target system, delivering the patch, installing it, and

cleaning up.

Prepare!

•!Man hours to
prepare the
target asset.!

•! Variables:
number of
assets, time to
prepare per
asset, number
of assets that
can be
simultaneously
prepared.!

Deliver!

•!Man hours to
deliver the
deployment
package to the
target asset.!

•! Variables: time
to locate asset,
time to
distribute patch
to asset,
number of
assets, number
of assets that
can be
simultaneously
deployed.!

Install!

•!Man hours to
install the
patch.!

•! Variables: time
to install (note
that this also
correlates with
downtime),
number of
assets, number
of assets that
can be
simultaneously
patched.!

Clean Up!

•!Man hours to
clean up post-
installation.!

•! Variables: time
to remove
deployment
package/patch
remnants,
number of
assets, number
of assets that
can be
simultaneously
cleaned.!

1. Prepare: Prepare the target asset for the patch. This could involve activities such as rebooting, logging in with

administrative credentials, backing up, putting applications into maintenance mode, and so on.

2. Deliver: Get the patch or deployment package on the system for installation. This could range from pushing a

deployment package from an administrative console, to physical delivery of installation media with a technician to a

remote location with low bandwidth connections.

3. Install: Install the patch or deployment package.

4. Clean up: Remove any temporary files or other remnants from the patch installation, and return the system to

functional status.

Securosis, L.L.C.

Project Quant: Measuring and Optimizing Patch Management — an Open Model
 17

ConÞrm Deployment
This is the last testing phase, where you confirm that the patch successfully deployed and is functioning properly. For

simple updates this could be very superficial, while for major application updates it might involve nearly as much effort as

initial testing.

Test Deployment!

•! Man hours to
test if the
patch
deployed
properly.!

•! Variables: time
to test
successful
deployment,
number of
patches in
deployment
package,
number of
cases to test,
time to
analyze
results, degree
of testing
automation,
number of
assets to test.!

Test Functionality!

•! Man hours to
test that
deployed
patches
function as
expected.!

•! Variables:
number of
patches in
deployment
package,
number of
assets to test,
number of
cases to test,
time to test,
degree of
automation,
time to
analyze
results.!

Document!

•! Man hours to
document
successful
deployment.!

•! Variables: time
to document,
degree of
automation,
number of
assets.!

1. Test deployment: Test to confirm that the patch deployed. Could involve use of external tools, such as configuration

or vulnerability scanners.

2. Test functionality: Test that the target asset is functioning properly in general, and that the patch delivered expected

functionality.

3. Document: Document successful deployment. This is important for compliance reasons, as well as for keeping your

asset configuration lists current.

Securosis, L.L.C.

Project Quant: Measuring and Optimizing Patch Management — an Open Model
 18

Clean Up
This phase consists of four steps involved with handling failed deployments.

Identify Failed
Deployments!

¥!Variables ßow from
ConÞrm
Deployment phase.!

Determine
Deployment Failure
Cause!

¥!Man hours to
determine why
deployment failed.!

¥!Variables: number of
failed deployments,
time to analyze
failures, degree of
automation/
reporting,
completeness of
deployment/failure
logs.!

Adjust Deployment
Parameters!

¥!Man hours to adjust
deployment
parameters, if
necessary, based on
failure analysis.!

¥!Variables: number of
failure cases, time to
adjust per case.!

Re-Deploy!

¥!Man hours to re-
attempt
deployment.!

¥!Variables: number of
re-deployment
attempts, costs per
redeployment
attempt (roll up of
Deploy, ConÞrm
Deployment, and
Clean Up phases). !

1. Identify failed deployments: This flows directly from the ConÞrm Deployment phase.

2. Determine deployment failure cause: Perform an analysis to determine why the patch or deployment package

didn’t install properly. This could be as simple as a system being shut down during installation, or as complicated as

undocumented dependencies and unexpected configuration parameters.

3. Adjust deployment parameters: Determine what’s needed to achieve a successful deployment. Although it’s not

reflected here, additional testing may be required.

4. Re-deploy: Attempt to reinstall the patch. This initiates the installation sub-cycle which returns to the Deploy phase.

Securosis, L.L.C.

Project Quant: Measuring and Optimizing Patch Management — an Open Model
 19

Document and Update ConÞguration Standards
This phase includes documentation of successful patch deployment, any specific system configuration changes, and

updates to configuration standards.

Document Patch
Deployment!

•!Man hours to
document patch
deployment and
individual asset
configuration changes.!

•!Variables: number of
assets to document,
time per asset to
document,
completeness of
current
documentation,
degree of automation,
number of changes
per asset.!

Determine and
Document Configuration
Standard Changes!

•!Man hours to
determine changes to
current configuration
standards (e.g., patch
levels or other
configuration
changes).!

•!Variables: number of
asset types, number of
configuration
standard changes per
asset type, time to
document, degree of
automation.!

Approve Configuration
Standard Changes!

•!Man hours to formally
approve any changes
to configuration
standards.!

•!Variables: number of
sign-offs required for
approval, time to
obtain sign-offs.!

1. Document patch deployment: Document the details of which systems were patched, and the patches applied. This

is increasingly important for compliance reasons, especially with security related patches. For large numbers of assets,

such as desktops, some level of automation is clearly important here.

2. Determine and document conÞguration standard changes: Some patches, such as those which increase version

levels or fix security flaws, will affect any configuration standards for the asset or asset type being patched. For

systems such as workstations which are frequently deployed from standard images you may need to also update the

image, or update deployment processes to apply the patch on new deployments before distribution.

3. Approve conÞguration standard changes: Obtain the appropriate approval for any updates to configuration

standards.

Securosis, L.L.C.

Project Quant: Measuring and Optimizing Patch Management — an Open Model
 20

The Metrics Model

Introduction
We’ve designed this model to be as intuitive as possible while still capturing the necessary level of detail. The model

collects an inclusive set of potential patch management metrics, and as with the patch management process we strongly

encourage you to tune your usage to fit your own environment.

Because the model includes so many possible metrics, we’ve color coded key metrics to help prioritize:

Key The most important metrics in a given category. Using only key metrics will provide a rough but

reasonably accurate overview of costs. These are the important useful metrics for determining

costs and operational efficiency, and can be reasonably collected by most organizations.

Valuable Metrics that are valuable but not critical for determining costs and efficiency. They provide greater

accuracy than key metrics alone, but take more effort to collect.

Standard Detailed metrics to help with deep quantification of a process, but these are either less important

or more difficult to quantify. They may be more difficult to collect, or might involve complex

interdependencies with other metrics.

Using key metrics alone will provide a reasonable picture of your patch management costs, operational efficiency, and

program effectiveness, but factoring in valuable metrics, or valuable & standard metrics, will provide greater detail.

How to Use the Model
For most organizations, we recommend you first identify the platform/asset type/process to evaluate, and then match it

against the patch management process before delving into collecting individual metrics. This serves two goals:

• First, it helps document your existing process. Since all the metrics in the model correlate with steps in the patch

management process, you’ll need this to begin quantifying your costs.

• Second, you may find that this identifies clear deficiencies in your current process, even before evaluating any metrics.

While the model may be used to evaluate patch management for all patching activity within an organization, it’s really

designed to focus on a specific patching process. Most organizations follow very different processes for different

platforms and asset types, such as desktop operating systems vs. database servers vs. network hardware. They are also

typically managed by different teams using different tools.

For the remainder of the model’s description we will assume you are measuring a specific process, and not evaluating an

entire program. The metrics we include are far too detailed to apply across multiple processes, teams, and platforms in

any single evaluation. Although one way to measure total costs for all patching activities is to make detailed

measurements for all the individual processes and then combine them (subtracting out overlapping efforts), this isn’t

Securosis, L.L.C.

Project Quant: Measuring and Optimizing Patch Management — an Open Model
 21

realistic for most organizations. Since measuring total program costs is also important, we have included a section on

adapting the model after the detailed description.

After identifying the patching process to measure, you’ll identify the roles/people involved in the process, as well as initial

fixed costs. Then walk through each step in the process, quantifying the individual metrics. Metrics vary for any given

patch, even on a single asset type, so enter the average cost for any given step. Then multiply that by the number of

patches over a given time period to determine total cost.

If you do have the ability to fully quantify costs for individual patches you’ll get a more accurate result, but this isn’t

realistic for most organizations. That said, with the right tools and automation you may be able to come extremely close

for certain processes. You may also find it useful to individually quantify certain patching activities for efficiency spot

checks, or after process changes.

Most of the metrics in this model are in terms of staff hours or ongoing full-time equivalents; others are hard costs (e.g.,

licensing fees, test equipment, etc.). Throughout the model we also collect counts for certain activities — e.g., the

number of patches, or the number of assets to patch. While these are not used to generate cost values, we find them

extremely useful in examining process efficiency and effectiveness.

DeÞne the Asset Type (or Program)
The first step is to determine which asset type/platform to measure. Alternatively, you may decide to estimate overall

program costs using the recommendations that follow the detailed model description.

It’s important to understand your goals before using the model; the more granular your definition, the more accurate your

cost metrics. For example, measuring the costs for an entire database platform will be less accurate than for a single

database/application stack, since testing requirements, maintenance windows, and other factors vary greatly as you

move from instance to instance. Platforms that are more standardized, such as desktop operating system deployments,

can be more accurately combined since they are managed collectively.

Choose the level of granularity that best meets your goals. In some cases, you may want to measure overall program

costs and efficiency. It might not be as precise as a single platform analysis, but as long as you measure consistently,

with measurements you can track over time, you will be able to compare the maturity of different areas. In other cases,

you might want to compare patching costs of specific applications in order to estimate their Total Costs of Ownership.

For major asset types, you might run an ongoing program to measure detailed patching costs in different phases to

identify efficiency issues and problem hot spots over time.

We’ve developed the model with extreme granularity to give you the flexibility to adapt it for a variety of needs within your

own organization.

Asset type/platform

Description

Number of assets of type

DeÞne Roles
Costs in the model are primarily measured by the staff hours involved in patch management. To correlate this with

financial costs, we need to define the various roles involved with different stages of patching.

Roles (and titles) vary greatly between organizations, so we list some representative examples.

Securosis, L.L.C.

Project Quant: Measuring and Optimizing Patch Management — an Open Model
 22

Role Description FTE Cost per FTE

(Hourly)

Annual Cost

Monitor

Risk/Security

Assessment

Test

Patch Management/

Deployment

System/Asset

Management

Audit/Compliance

Other

Other

Other

Since the entire cost model relies on understanding the hourly costs of manpower, these are all key metrics. In a small

organization these roles might all be filled by a single individual.

Determine Non-Phase Program Costs
These are costs associated with patch management, which aren’t specific to any particular phase of the process. Some

of these are for third party tools which need to be prorated by how much of their usage is for the asset under evaluation.

Not all organizations use all of these tools, and some may use additional tools, so we’ve presented some common

options.

Variable Cost % Dedicated to Asset

Support or maintenance license

Patch management/deployment

system

Time to configure and deploy

patch management/deployment

tool on target assets

Vulnerability assessment tool

Configuration management tool

Test environment/tools

Documentation management

Patch notification service

Other

Determine Individual Phase Costs
We now advance through each phase and step in the patch management process, collecting individual metrics.

Securosis, L.L.C.

Project Quant: Measuring and Optimizing Patch Management — an Open Model
 23

Phase 1: Monitor for Release/Advisory

Step 1: Identify Asset Types

Variable Notes Responsible Role

Number of asset types in program The number of different hardware/

software platforms in the patching

program being evaluated. This could

be everything in the organization, or a

subset, such as application servers.

NA

Initial time to identify asset types

Time to update asset type list

Asset list updates per year NA

Step 2: Identify Advisory Sources

Variable Notes Responsible Role

Number of advisory sources in

program

NA

Initial time to identify sources

Initial time to match sources to asset

types

Time to update source list and match

to asset types

The time dedicated to keeping the

source list updated.

Source list updates per year NA

Step 3: Monitor for Advisories

Variable Notes Responsible Role

Time to monitor sources for advisories

(per release)

The average time per advisory to look

for, acquire, and read the advisory.

Number of advisories per year NA

Time to identify asset type per patch The time it takes, on average, to

identify the asset type affected by a

patch on release.

Number of patches per year NA

Phase 2: Evaluate

Step 1: Match to Asset Type

Variable Notes Role

Number of patches in set Most patch sets include a number of

patches. Since the number of patches

strongly affects testing and

deployment, it’s important to track.

NA

Securosis, L.L.C.

Project Quant: Measuring and Optimizing Patch Management — an Open Model
 24

Variable Notes Role

Number of assets matching patch set

Time to match patches in set to asset

types

The time to determine if the patches

affect your organization at all.

Number of patches in set matching

assets

Carries through to all steps in this

phase.

Step 2: Determine Nature

Variable Notes Role

Time to determine nature from patch

documentation

For example, “security update” or

“general bug fix”. Throughout the

model we track the time to find

information in various documentation

to determine the effectiveness of the

documentation and its impact on time/

resources.

Time to validate/evaluate nature The total time to evaluate and

determine the nature of the patch.

Step 3: Determine Relevance and Priority

Variable Notes Role

Time to determine priority and

criticality from patch documentation

Time to determine priority and

criticality of matching assets or asset

type in asset list

This is the time to check internal

documentation (the asset list) and

determine the importance of each

asset being patched. For widely

distributed platforms this is generally

by asset type, while it may be per

asset for critical systems, such as the

customer transaction system.

Time to determine overall priority

(based on priority of patch and priority

of asset)

This is the initial assessment of the

patch to determine if it’s a priority for

further acquisition, evaluation, and

deployment. The detailed security and

priority analysis occurs in phase 4.

Step 4: Determine Dependencies

Some patches, especially for enterprises software, have complex sets of child dependencies (software that relies on

them) or parent dependencies (software they rely on). Since patches may affect upstream and downstream functionality,

or may require other patches of components on the same system, we determine that here.

Securosis, L.L.C.

Project Quant: Measuring and Optimizing Patch Management — an Open Model
 25

Variable Notes Role

Time to identify dependencies in patch

documentation

Time to match dependencies to asset

types

Time to evaluate dependencies

Step 5: Workarounds and Shielding

Although workarounds and shielding are part of a separate process, it’s still important to evaluate the amount of time

spent on these activities by the patch management team.

Variable Notes Role

Time to identify workarounds and

shielding in patch documentation

Time to identify undocumented/

alternative workarounds and shielding

Time to match workarounds and

shielding to assets

Time to initiate workaround and

shielding processes

This is the time to initiate any external

process, although it can also be used

if you already integrate shielding and

workarounds into your core patch

management process.

Phase 3: Acquire

Step 1: Locate

Variable Notes Role

Time to locate patch

Step 2: Acquire

Variable Notes Role

Time to acquire The staff hours to acquire the patch.

Acquisition channel costs Any special bandwidth or physical

delivery charges.

Step 3: Validate

Variable Notes Role

Time to validate Confirm all components were acquired

properly, and verify hashes (if

available).

Securosis, L.L.C.

Project Quant: Measuring and Optimizing Patch Management — an Open Model
 26

Phase 4: Prioritize and Schedule

Step 1: Prioritize

Variable Notes Role

Time to determine number of patches

in set documentation

Flows from Phase 2

Number of patches in set Flows from Phase 2 NA

Time to determine asset types

patched from patch documentation

Flows from Phase 2

Number of asset types matching

patch set

Flows from Phase 2 NA

Time to determine asset types

matching patch set within organization

Flows from Phase 2

Number of patches in set matching

organization asset types

NA

Time to determine priority of patch

from patch documentation

Time to determine priority of asset

types from organization

documentation

Time to perform security assessment/

prioritization (if required)

Included since security assessments

of patches are often performed

separately from the platform

manager’s assessment.

Time for internal evaluation and

determination of patch priorities

Overall time to determine the priority of

the patches, based on importance of

the asset types patched.

Step 2: Match to Assets

Variable Notes Role

Number of assets of asset type NA

Time to match assets to patched

asset types

Completeness/currency of asset list

documentation is key.

Time to determine network and/or

physical locations of assets to be

patched

Completeness/currency of asset list

documentation is key.

Step 3: Schedule

Variable Notes Role

Number of assets to be scheduled NA

Time to develop and document

patching schedule

Securosis, L.L.C.

Project Quant: Measuring and Optimizing Patch Management — an Open Model
 27

Phase 5: Test and Approve

Step 1: Develop Test Criteria

Variable Notes Role

Number of patches in set Flows from Phase 2 NA

Number of assets/asset types

requiring individual test cases

For some asset types, general testing

is possible (e.g., standard desktop

operating system images). For others,

such as application/database stacks,

each individual asset will require its

own test cases.

NA

Time to identify and locate existing test

cases/criteria

Time to develop new test cases/

criteria

This includes functional and

performance testing, and may include

installation testing. More robust

deployment/installation testing is

performed in the next phase.

Time to identify test-related

dependencies

For some patches, there are

requirements to test dependent

applications/functions.

Total number of test cases/criteria

Total time to document test criteria

Step 2: Test

Variable Notes Role

Time to establish test environment and

assemble testing resources

Building a test environment may take

considerable time and involve material

costs.

Time to perform tests

Time to document test results

Step 3: Analyze Results

Variable Notes Role

Number of test results to analyze NA

Time to analyze test results This is the total time, which may

involve multiple staff/roles.

Securosis, L.L.C.

Project Quant: Measuring and Optimizing Patch Management — an Open Model
 28

Step 4: Approve

Variable Notes Role

Number of approvers required There is generally a correlation

between the number of people

involved in an approval process, and

the time it takes to approve.

Time to approve

Time to document approval

Test/Analyze Cycle

Variable Notes Role

Number of failed tests NA

Time to adjust test criteria, asset, or

patch

Number of re-test cycles When re-testing is required, costs are

cumulative across all cycles.

Phase 6: Create and Test Deployment Package

Step 1: Identify Deployment Tool

Variable Notes Role

Number of asset types to patch Flows from Phase 2 NA

Number of deployment tools NA

Time to identify correct deployment

tool for asset and patch

Complete documentation is important

for minimizing this time.

Step 2: Consolidate Patches

Variable Notes Role

Number of patches to consolidate for

asset types

For scheduled patching, this could

involve multiple patches and patch

sets.

NA

Time to consolidate patches

Step 3: Build Deployment Package

Variable Notes Role

Number of patches for deployment

package

NA

Time to create package The time to create the actual

deployment package.

Securosis, L.L.C.

Project Quant: Measuring and Optimizing Patch Management — an Open Model
 29

Step 4: Test Deployability

Variable Notes Role

Number of deployment packages to

test

NA

Number of deployment conditions/

targets to test

NA

Time to prepare test environment

Time to test

Time to analyze test results

Step 5: Test Functionality

Variable Notes Role

Number of deployment packages to

test

NA

Number of deployment conditions/

targets to test

NA

Time to prepare test environment

Time to test

Time to analyze test results

Step 5: Approve Package

Variable Notes Role

Number of sign-offs required for

approval

NA

Time to obtain approval

Time to document approval

Test/Analyze Cycle

Note that these apply to both functional testing and deployability testing:

Variable Notes Role

Number of failed tests NA

Time to adjust test criteria, asset, or

patch

Number of re-test cycles When re-testing is required, costs are

cumulative.

Phase 7: Deploy

Step 1: Prepare

Variable Notes Role

Number of assets to prepare for patch NA

Securosis, L.L.C.

Project Quant: Measuring and Optimizing Patch Management — an Open Model
 30

Variable Notes Role

Number of assets that can be

simultaneously prepared

NA

Time to locate target assets This time tends to be considerable in

less mature organizations, and should

be promoted to a key metric in such

environments.

Time to prepare target for patch This includes gaining access to the

machine, performing backups, or

other pre-patch activities.

Step 2: Deliver

Variable Notes Role

Number of assets to which patch can

be simultaneously deployed

NA

Time to deploy The time to deliver the patch to the

target.

Step 3: Install

Variable Notes Role

Time to install This is the total time to install the

patch/package on all target assets,

not just a single asset. If deployment

time per asset is consistent, you can

take the average time per asset and

multiply by the number of assets.

NA

Step 4: Clean Up

Variable Notes Role

Time to remove deployment package

and patch remnants

Costs associated with anything

beyond cleaning up the patch

components are included in the Clean

Up phase.

Phase 8: ConÞrm Deployment

Step 1: Test Deployment

Variable Notes Role

Number of deployment packages to

test

NA

Number of assets to test NA

Securosis, L.L.C.

Project Quant: Measuring and Optimizing Patch Management — an Open Model
 31

Variable Notes Role

Number of assets that can be

simultaneously tested

NA

Time to test

Time to analyze test results

Step 2: Test Functionality

Variable Notes Role

Number of deployment packages to

test

NA

Number of assets to test NA

Number of assets that can be

simultaneously tested

NA

Time to test

Time to analyze test results

Step 3: Document

Variable Notes Role

Number of failed deployments

Time to document It’s especially important to document

the number (and identification) of failed

deployments for the next phase.

Phase 9: Clean Up
For unsuccessful deployments, this phase kicks off a re-deployment cycle that will normally include the Deploy, Confirm

Deployment, and Clean Up phases until all target assets are patched.

Step 1: Identify Failed Deployments

Variable Notes Role

Number of failed deployments Use an annual average unless you are

measuring a single deployment.

NA

Time to identify failed deployments NA

Step 2: Determine Deployment Failure Cause

Variable Notes Role

Time to locate information source or

log with failure information

Poor logging will significantly increase

investigative time to identify the cause

of the failure.

Time to determine failure cause

Securosis, L.L.C.

Project Quant: Measuring and Optimizing Patch Management — an Open Model
 32

Step 3: Adjust Deployment Parameters

Variable Notes Role

Number of different failure modes NA

Time to adjust deployment parameters The time to change the asset or the

deployment to achieve a successful

deployment.

Step 4: Re-Deploy

Variable Notes Role

Number of re-deployment attempts NA

Total cost per re-deployment This is a combination of the Deploy,

Confirm Deployment, and Clean Up

phases.

Phase 10: Document
In some cases, tools generate reports that meet many documentation requirements.

Step 1: Document Patch Deployment

Variable Notes Role

Number of assets, asset types, and

patches to document

NA

Time to document This is a key aspect, as it is often

required for compliance audits or

reporting.

NA

Step 2: Determine and Document ConÞguration Standard Changes

Variable Notes Role

Number of asset types requiring

configuration standard documentation

changes

NA

Number of configuration changes NA

Time to identify and analyze current

configuration standards.

Time to determine configuration

standard changes

Time to document This is a key metric due to its role in

compliance. Although still important in

organizations without compliance

mandates, it can be reduced to

Valuable in such situations.

Securosis, L.L.C.

Project Quant: Measuring and Optimizing Patch Management — an Open Model
 33

Step 3: Approve ConÞguration Standard Changes

Variable Notes Role

Number of sign-offs required for

approval

NA

Time to obtain sign-offs

Program Metrics
These metrics don’t correlate directly to costs, but are useful in evaluating overall efficiency and effectiveness.

The Center for Internet SecurityÕs Consensus Metrics
The Center for Internet Security maintains a list of consensus metrics for benchmarking entire security programs at http://

www.cisecurity.org/securitymetrics.html. These include a section on patch management, and we recommend using

these metrics for both security and non-security evaluations:

Metric DeÞnition/Notes

Patch Policy Compliance The number of assets patched to current policy or configuration management

standards, divided by the total number of assets. This helps evaluate the

overall effectiveness of your program, and can be measured with vulnerability

and configuration scanning tools.

Patch Management Coverage The number of assets included in a formal patch management process or

automated system, divided by the total number of assets. This helps evaluate

both the efficiency of your program (under the assumption systems under a

process are more efficiently managed), as well as its effectiveness (how well the

organization identifies assets and asset types and incorporates them into a

management process).

Mean Time to Patch The time from the release of an advisory until successful patch installation. This

measures how effective the organization is at updating systems.

Combine and Analyze Costs
The final step is to combine, then analyze, the various costs and metrics. Convert time-based metrics into dollar values

by correlating back to the responsible roles, which should have per-hour costs assigned from the roles section. The non-

time/cost metrics are included to help with efficiency and effectiveness analysis, while the program metrics provide a

high-level overview of your program.

You will then have financial costs for each phase of the patch management process, personnel costs, and resource/tools

costs. You will also have the total time spent on each phase of the process, and for the steps in each phase.

Your analysis will then vary depending on your goals. Some possibilities include:

• Tracking patching costs for a specific program/asset type over time for trending.

• Analyzing a patching process to identify specific inefficiencies, such as one part of the process dominating time and

resources (e.g., learning that the lack of a dedicated test environment costs more over time than building an

environment).

• Comparing potential costs of different software platforms based on historical modeling (number of patches, frequency

of patches, failed/bad patches, completeness of documentation, and so on).

Securosis, L.L.C.

Project Quant: Measuring and Optimizing Patch Management — an Open Model
 34

http://www.cisecurity.org/securitymetrics.html
http://www.cisecurity.org/securitymetrics.html
http://www.cisecurity.org/securitymetrics.html
http://www.cisecurity.org/securitymetrics.html

• Evaluating process changes for their potential cost, as well as possible efficiency changes.

Adapting the Model for Measuring a Complete Program
There are two approaches for measuring patching across the entire inventory of asset types. In one, you perform a full

metrics evaluation in different areas and then roll up the results. In the other, you choose only one or two key metrics for

each patching phase, measure those, and then roll up the totals.

Full Evaluation

This is essentially using the complete model in different areas (desktops, servers, etc.), and then rolling up the total costs.

This is likely only practical in mature organizations with a high degree of automation to assist in metrics collections. Here

are a few suggestions for adapting the process:

• Focus heavily on identifying roles and the amount of time they dedicate to patching. Break this out by different

patching processes (servers vs. desktops). This alone will give you a good idea of the resources dedicated to patching

different asset types.

• When collecting tool and licensing costs, also inventory which asset types are covered by the various tools. You may

find that you’ve already licensed a tool that could work in other areas, which isn’t being used due to lack of

communication between IT groups.

• Issue guidelines on how to collect the metrics. Although they are fairly self-explanatory, different teams almost certainly

use different process and will fit (or interpret) the model differently.

• Use automation to collect the metrics as much as possible (for example, reports from tools). This model is very

granular, and it will be difficult to collect this volume of metrics without some degree of automation.

Key Metrics Evaluation

This method focuses more on key metrics for those organizations without the resources for a full evaluation. It’s more

practical across a wider range of organizations, but far less granular.

• As with a full evaluation, pay particular attention to your role analysis and costs, since these alone will give a good

picture of your program.

• Also pay close attention to tools and licensing costs and usage.

• Then estimate the metrics for each phase of the process, using only 1-2 key metrics. We suggest:

Phase Cost Metrics Other Metrics

Monitor for Release/Advisory Time to monitor sources for advisories Number of advisories per year

Evaluate Time to determine overall priority

(based on priority of patch and priority

of asset)

None

Acquire None None

Prioritize and Schedule Time to develop and document

patching schedule,

Time to perform security assessment/

prioritization (if required),

Time for internal evaluation and

determination of patch priorities

None

Test and Approve Time to perform tests Number of re-test cycles

Securosis, L.L.C.

Project Quant: Measuring and Optimizing Patch Management — an Open Model
 35

Phase Cost Metrics Other Metrics

Create and Test Deployment Package Time to create package None

Deploy Time to install Number of assets to prepare for patch

Confirm Deployment Time to Test (Deployed) Number of failed deployments

Clean Up Time to identify failed deployments,

Total cost per re-deployment

Number of re-deployment attempts

Document and Update Configuration

Standards

Time to document None

The Costs of Maintenance Windows and Predictable Patches
Although some patches are released on a predictable schedule, many more appear somewhat randomly as vendors fix

the inevitable flaws that appear after products are released. For non-security patches, unless a system is currently

experiencing problems, these updates can be scheduled for installation during a set maintenance window. As we

discovered in the project survey, most organizations establish formal maintenance windows for assets to apply major

updates and perform regular maintenance tasks while minimizing any disruption to operations.

On many platforms the bulk of unscheduled updates are security patches to fix open vulnerabilities, and occasionally we

also see updates for functionality or reliability flaws that aren’t initially apparent, but require immediate attention. These

patches, depending on their risk and priority, often can’t wait until the next scheduled maintenance window. While

patching during scheduled maintenance windows clearly disrupts operations (both business and IT) less than

unscheduled patches, it’s difficult to measure the potential additional costs of patching outside the schedule.

During the review process, multiple contributors noted the lack of any metrics around maintenance windows. Since this

model is focused on measuring the costs associated with patching, it’s beyond its current scope to measure the costs of

downtime or productivity loss. Also, total downtime may be equal for a scheduled or unscheduled patch, and can equally

affect productivity in terms of the time involved in the patching activity, so it’s extremely difficult to accurately model. An IT

administrator may need to put off other projects to deal with an unexpected security patch, but if this doesn’t impact the

total hours worked, there’s no way to measure the associated financial costs.

For organizations interested in understanding the role of maintenance windows, we suggest the following approaches:

• Overtime for off-hours updates are normally included in project costs for scheduled updates and maintenance

windows, but will not be formally budgeted for unscheduled patches. Even for salaried employees, these hours can be

tracked and costs calculated for unbudgeted vs. budgeted hours. Although total salary costs don’t change, you are

still calculating the costs associated with unplanned patches that could otherwise be dedicated to other activities.

• For unplanned patches, many of the individual metrics may rise. For example, if a test environment isn’t prepared, or

personnel are not available, this could add to both the direct time/cost metrics (such as time to perform activities in the

phases), or the program metrics (time to patch). This allows you to compare the costs of various kinds of patches,

including scheduled vs. unscheduled.

• The model will also help improve efficiency in handling patches. You’ll have a better idea of how many scheduled vs.

unscheduled patches to expect over time, and gain insight into efficiency issues in handling the different kinds of

patches.

Although anyone with experience in patch management intuitively understands the difference in disruptions between

scheduled and unscheduled patches, and the value of maintenance windows, this model doesn’t make any blanket

Securosis, L.L.C.

Project Quant: Measuring and Optimizing Patch Management — an Open Model
 36

assumptions or judgements as to advantages or disadvantages. Instead, the model is designed to allow you to measure

and compare these costs yourself, with the caveat that it doesn’t measure business disruptions, productivity costs, or

user frustration levels.

Securosis, L.L.C.

Project Quant: Measuring and Optimizing Patch Management — an Open Model
 37

Conclusions and Next Steps

Patch Management Is Still DifÞcult... Mostly
Patch management is one of the most fundamental functions of IT departments, yet in our research we discovered it

remains one of the biggest pain points for many organizations. Despite decades of experience, a combination of vendor

inconsistency, conflicting priorities, and a lack of industry standards make patch management more difficult than it needs

to be for many IT practitioners. We want to constrain our patch management costs, but lack the tools to measure them,

or standard processes to guide our efforts.

There is also wide variance in maturity between technology platforms. Workstation operating systems, likely in large part

due to security issues, are generally patched more consistently and effectively than other platforms, such as enterprise

applications. But even on workstations, based on our survey results, desktop applications and device drivers are

patched far less frequently and effectively than the operating system itself (despite these being major vectors for security

exploits).

By providing a granular process framework and metrics model we hope to help organizations better drive process

improvements, reduce costs, and increase both efficiency and effectiveness.

Next Steps
This report, and the patch management survey results hosted on the Project Quant site, are the result of months of

community research and effort, but are only the beginning. Our goal is to continue this effort to improve both the state of

patch management specifically, and the collection of IT metrics in general. Specific next steps include:

• Conduct focused interviews with survey respondents who indicated interest in additional discussions, and publish the

(anonymous) results.

• Incorporate the public feedback that we anticipate on release of this document, and use it to refine and improve the

model.

• Publish example use cases for the model, covering different kinds of technology assets (servers, workstations,

databases) for organizations of various sizes and natures.

• Expand into adjacent research areas, such as building out a model for shielding and workaround costs.

• Continue to engage heavily with the patch management community and solicit their direct involvement in future

revisions of the model.

• Research the possibility of benchmarking to better enable organizations to compare their costs to their peers.

• Develop a standard taxonomy for enhanced communication and automation of metrics collection, and work with the

vendor community to include these in future products.

• Build a sustainable community dedicated to the improvement and advancement of patch management metrics.

Securosis, L.L.C.

Project Quant: Measuring and Optimizing Patch Management — an Open Model
 38

http://securosis.com/projectquant
http://securosis.com/projectquant

Finally, the authors of this report would like to encourage additional open, independent, community research and analysis

projects in IT and security metrics. Utilizing a transparent research process enables new kinds of collaboration capable of

producing unbiased results. We are investigating other opportunities to promote open research and analysis, particularly

in the areas of metrics, frameworks, and benchmarks.

In closing, we want to encourage readers to help drive further progress on Project Quant goals by visiting the project site

at http://www.securosis.com/projectquant and becoming an active community participant. One key way you can help is

to provide your own experience to the community by taking the survey featured in this report at:

http://www.surveymonkey.com/s.aspx?sm=SjehgbiAl3mR_2b1gauMibQw_3d_3d

Securosis, L.L.C.

Project Quant: Measuring and Optimizing Patch Management — an Open Model
 39

http://www.securosis.com/projectquant
http://www.securosis.com/projectquant
http://www.surveymonkey.com/s.aspx?sm=SjehgbiAl3mR_2b1gauMibQw_3d_3d
http://www.surveymonkey.com/s.aspx?sm=SjehgbiAl3mR_2b1gauMibQw_3d_3d

Who We Are

About the Authors
Rich Mogull, Securosis

Rich has over 17 years experience in information security, physical security, and risk management. Prior to founding

Securosis, Rich spent 7 years as one of Gartner’s leading security analysts, where he advised thousands of clients,

authored dozens of reports, and was consistently rated one of Gartner’s top international speakers. He is well known for

his work on data security technologies and has covered issues ranging from vulnerabilities and threats, to risk

management frameworks, to major application security. Rich is the Security Editor of TidBITS, a monthly columnist for

Dark Reading, and a frequent contributor to publications ranging from Information Security Magazine to Macworld.

Jeffrey Jones, Microsoft

Jeff Jones is a Director in Microsoft’s Trustworthy Computing group. In this role, Jeff draws upon his years of security

experience to work with enterprise CSOs and Microsoft's internal security teams to drive practical and measurable

security improvements into Microsoft process and products. Prior to his position at Microsoft, Jeff was the vice president

of product management for security products at Network Associates where his responsibilities included PGP, Gauntlet,

and Cybercop products, and prior to that, the corporate McAfee anti-virus product line. These latest positions cap a 20

year hands-on career in security, performing risk assessments, building custom firewalls, and being involved in DARPA

security research projects focused on operating system security while part of Trusted Information Systems. Jeff is a

frequent global speaker and writer on security topics ranging from the very technical to more high level, CxO-focused

topics such as Security TCO and metrics.

Securosis, L.L.C.

Project Quant: Measuring and Optimizing Patch Management — an Open Model
 40

