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Introduction 

Secrets Management platforms do exactly what the name implies; they store, manage, and provide 
secrets. The technology addresses several problems most security folks don’t yet know they have. 
As development teams leverage automation and orchestration techniques they create new security 
issues which then must be tackled. Our reliance on automation of cloud services is making 
application and IT services faster and more resilient, but with that advancement comes a need to 
provide permissions to machines and software instead of just people. In some ways this is the new 
iteration of the identity management problem from the early 2000s, magnified across personal 
devices and cloud computing infrastructure. 

And that is the genesis of the problem: Developers have automated software build and testing, and 
IT automates provisioning, but both camps still believe security slows them down. Continuous 
Integration, Continuous Deployment, and DevOps practices all improve agility, but also introduce 
security risks — including storing secrets in source code repositories and leaving credentials sitting 
around. This bad habit leaves every piece of software that goes into production is at risk! 

All software needs credentials to access other resources; to communicate with databases, to obtain 
encryption keys, and access other services. But these access privileges must be carefully protected 
lest they be abused by attackers! The problem is the intersection of knowing what rights to 
provision, what format the software can accept, and then securely provision access rights when a 
human is not — or cannot — be directly involved. Developers do integrate with sources for identity 
— such as directory services — but are usually unaware technologies exist that helps them 
distribute credentials to their intended destinations.  

To address these changes, powerful utilities and platforms have been developed to secure sensitive 
data, and secure distribution of privileges. The term for this new class of product is “Secrets 
Management”; and it is changing how we deliver identity, secrets, and tokens — as well as the way 
we validate systems for automated establishment of trust. In fact Secrets Management is a core 
piece to move DevOps into SecDevOps. This research will explore why this is an issue for many 
organizations, what sorts of problems these new platforms tackle, and how they work in newer 
environments.  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The Challenge of Machine 
Identit ies 

Obtaining secrets is essential for automation scripts to function, but many organizations cling to the 
classic (simple) mode of operation: place secrets in files or embed them into scripts so tasks can 
complete without human intervention. Developers understand this is problematic and that this is a 
rapidly expanding form of technical and security debt that is being swept under the rug only to have 
it reappear in an audit or after a breach event.  And they certainly do not go out of their way to tell 
security about how they provision secrets, so most CISOs and security architects are unaware of 
this emerging issue until an event occurs.   

The problem is not new. Administrators have been putting secrets in unsecured files for decades. No 
administrator wants to be called into work in the middle of the night to enter a password so an 
application can restart. IT administrators routinely store encryption keys in files so an OS or 
application can access them when needed. Database administrators place encryption keys and 
passwords in files to facilitate automated reboots. Or they did until corporate networks came under 
even more attack and this industry-wide practice was disallowed. Since then we have relied upon 
everything from manual intervention, to key management servers, and even hardware dongles to 
provide a root of trust to establish identity and provision systems. But the old approaches don’t 
provide the required security in new compute and development environments – and the stakes are 
much higher because of the dynamic nature of how we provide software and services. 

It sounds cliche, sure, but IT and application environments are genuinely undergoing radical change. 
New ways of deploying applications as microservices and into containers are improving our ability to 
cost-effectively scale services and large systems. Software-defined IT stacks and granular control 
over services through APIs provide tremendous agility advantages. Modern operational models such 
as Continuous Integration and DevOps amplify these advantages, bringing applications and 
infrastructure to market faster and more reliably. 

Perhaps the largest change currently affecting software development and IT is cloud computing.The 
on-demand and elastic nature of cloud-based services offers huge advantages, predicated on 
automated infrastructure defined as software. The cloud is not a necessary component of these 
other advances, but it makes them even more powerful. Leveraging all these advances together, a 
few lines of code can launch —or shut down — an entire (virtual) data center in minutes, with 
minimal human involvement or effort.  

Securosis — Understanding and Selecting Secrets Management Platforms 	 "5



Alongside their benefits, automation and orchestration raise new security concerns. The major issue 
today is securely sharing secret information. This is especially problematic where ‘machines’ are not 
something sitting in a rack at a co-location facility, but instead an ephemeral instance of a machine 
— or perhaps thousands of instances running simultaneously, potentially being created and 
destroyed by the dozen due to the transitory vagaries of demand. How can we track which server, 
virtual machine, or container is which, or what set of permissions to provide each? And the scope of 
the problem broadens as we extend automation and orchestration across teams. Development 
teams need to share data, configurations, and access keys across and between teams to cooperate 
on application development and testing. Automated build servers need access to source code 
control, API gateways, and user roles to accomplish their tasks. Servers need access to encrypted 
disks, applications need to access databases, and containers must be provisioned with privileges as 
they start up. Automated services cannot wait around for users to type in passwords or provide 
credentials! So we need new agile and automated techniques to provision data, identity, and access 
rights. 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Use Cases 

There are several reasons secrets management is needed and use cases are diverse. That said, the 
key issue to address is to securely provision access rights to services, which is largely absent today. 
Instead, secrets are typically kept in cleartext within documents and applications. These issues 
become more pressing as large enterprise adopt these more agile deployment methods, and do so 
at scale. Most firms already rely upon identity stores systems to maintain a central point of control 
over identity and access rights. What they lack is the distribution mechanism to consistently support 
security policies across mixed/complex environments found at large enterprises, both on-premises 
and public cloud environments. 

Principal Customer Use Cases 

1. API Gateways and Access Keys: Application Programming Interfaces are how software 
programs interact with other software and services. These API form the basic interface for 
coordinated operation. To use an API you must first authenticate yourself — or your code — to 
an API gateway. This is typically handled by providing an access key, token, or response to a 
cryptographic challenge. For ease of automation many developers hard-code access keys, 
leaving themselves vulnerable to simple file or code inspection. And all too often, even kept in a 
private file on a developer’s desktop, keys are accidentally shared or posted — sometimes to 
public code repositories. The goal here is to keep access keys secret, while still provisioning 
them to valid applications as needed. 

2. Services: Applications are seldom stand-alone entities. They are typically comprised of many 
different components, databases, and supporting services. With current application 
architectures, we launch many instances of an application to ensure scalability and resiliency. As 
we launch applications, whether in containers or atop virtual machines or servers, we must 
provision them with configuration data, identity certificates, and tokens. How does a newly 
created virtual machine, container, or application discover its identity and access the resources it 
needs? How can we uniquely identify a specific container instance among a sea of clones? In the 
race to fully automate their environments, organizations have automated so fast they tend to get 
out over their skis, with little security and a decided imbalance towards build speed. Developers 
typically place credentials in configuration files which are conveniently available to applications 
and servers on startup. We find production credentials shared with quality assurance and 
developer systems, which are often much less secure and unmonitored. They are also frequently 
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shared with other applications and services which should not have access. The goal is to 
segregate credentials without causing breakage or unacceptable barriers. 

3. Build Automation: Most software build environments are insecure. Developers feel security 
within development slows them down, so they often bypass security controls in development 
processes. Build environments are normally under developer control, on development-owned 
servers, so few outsiders know where they are or how they operate. Nightly build servers have 
been around for over a decade, with steadily increasing automation to improve agility. As things 
speed up, we remove human oversight. As new code, formation templates, and scripts are 
checked into repositories, build servers like Jenkins and Bamboo automatically regenerate 
applications. But they also validate new additions running quality assurance and security tests, 
halting the process should these tests fail. This means quality tests and security tests are part of 
the build process, and no longer slow development process, rather act as a safeguard so that 
bad code no longer makes it into production. Provisioning of secrets into the process, because it 
is also part of the automation process, is just as agile and automatic as building and launching 
applications. We define, through policies, the rights to be granted, ensuring we deliver code and 
services securely and without need for human intervention. 

4. Provisioning Machine Identities: As we leverage cloud services our definition of ‘server’ 
changes. The cloud uses the concepts of compute, network, and storage as services to be 
allocated as needed and retired when not. So what we previously thought of as on-premise 
‘machines’ have become ephemeral instances of a machine, often both virtual and multiple; 
represented as a server image, a container, or some similar concept. But because we fluidly 
bring these ‘machines’ up and down, it has become very difficult to keep track of which server 
responded to which request, so we need some way to issue them unique identities. We might 
need to find a potentially unhealthy or compromised machine instance, and conduct incident 
response, but we cannot blindly take the same remediation action against every instance, so 
targeting a unique identity is critical.  

5. Encrypted Data: Providing encryption keys to unlock encrypted volumes and file stores is a 
common task, both on-premise and for cloud services. Traditionally we used key management 
servers designed to handle secure distribution and management of keys, but a number of 
commercial key management tools (both hardware and software) have not yet been augmented 
for Infrastructure or Platform as a Service. Additionally, developers now demand better API 
integration for seamless use with applications. This capability is frequently lacking, so some 
teams use cloud-native key management, while others opt for secrets management as a 
replacement. 

6. Sharing: Collaboration software has helped development, quality assurance, and product 
management teams cooperate on projects — even though people work remotely or enterprises 
with teams on different continents. In some contexts, the issue is how to securely share 
information across a team of remote developers, or share secret data across multiple data 
centers without exposing it in cleartext. The databases that hold data for chat and collaboration 
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services tend not to be very secure, and texting certificates to a co-worker is a non-starter. The 
solution is a robust central repository, where a select group of users can store and retrieve 
secrets. 

Of course there are plenty more use cases. In interviews, we discussed everything from simple 
passwords to bitcoin wallets. But for this research we needed to focus on the issues developers and 
IT security folks asked about.  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Features and Functions 

It’s time to discuss the core features of a secrets management platform. As this is a new class of 
product there is little feature consistency in the market. Many are graciously referred to as ‘products’ 
and are little more than personal productivity tools. Full-function, enterprise class platforms are the 
exception. However, there are basic functions every secrets management platform needs to 
address; secure storage of secrets, provisioning secrets, identity management, and API access to 
aid programatic integration. When considering what you need from such a platform the key to keep 
in mind is that most of them were originally developed to perform a single very specific task — such 
as injecting secrets into containers at runtime, or integrating tightly with a Jenkins build server, or 
supplementing a cloud identity service. Those do one thing well, but rarely address multiple use 
cases and create unmanaged security islands.  

Now let’s take a closer look at key features. 

Core Features 

Secrets management platforms are software applications designed to support other applications 
with a very important task: securely storing and passing secrets to the correct parties. The most 
important characteristic of a secrets management platform is that it must never leave secret 
information sitting around in cleartext! Secure storage is Job #1. 

Storing Secrets 
Almost every tool we reviewed provides one or more encrypted repositories — which many products 
call a ‘vault’ — to store secret information. As you insert or update secrets in the repository, they are 
automatically encrypted prior to being written to storage. Shocking though it may be, at least one 
product we reviewed does not actually encrypt secrets — instead secrets are stores in plain-text. 
This should disqualify it from consideration. Fortunately most vaults use vetted implementations of 
well-known algorithms to encrypt secrets. But it is worth vetting any implementation, with your 
regulatory and contractual requirements in mind, to ensure the vault meets your security 
requirements. 

With the exception of select platforms which provide ‘ephemeral secrets’ (more on these later), all 
secret data is stored within these repositories for future use. Nothing is stored in cleartext. How each 
platform associates secrets with a given user identifier, credential, or role varies widely. Each platform 
has its own way of managing secrets internally, but they typically use a unique identifier or key-value 
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pair to identify each secret. Some store multiple versions of each secret, so changes over time can 
be recalled if necessary for recovery or auditing, but the details are part of their secret sauce. 

Repository structures vary widely between offerings. Some store data in simple text or JSON files. 
Some use key-value pairs in a NoSQL style database. Others use a relational or NoSQL database. A 
couple employ multiple repository types to increase isolation between secrets and/or use cases. The 
repository architecture is seldom determined primarily by strong security — more influential drivers 
include low cost and ease of use for product developers. And while a repository of any type can be 
secured, the choice of repository impacts scalability, how replication is performed, and how quickly 
you can find and provision secrets. 

Another consideration is which data types a repository can handle. Most platforms we reviewed can 
handle any type of data you want to store: string values, text fields, N-tuple pairings, and binary 
data. Indexing is often performed automatically as you insert items, to speed lookup and retrieval 
later. Some platforms really only handle strings, which simplifies API but limits usability. Again, 
products tailored to a particular use case may be unsuitable for other uses or across teams. 

Identity and Access Management 
Most secrets management platforms concede IAM to external Active Directory or LDAP services, 
which makes sense because most firms already have an IAM infrastructure in place. Users 
authenticate to the directory store to gain access, and the server leverages existing roles to 
determine which functions and secrets the user is authorized to access. Most platforms are also 
able to use a third-party Cloud Identity Service or Privileged Access Management service, or to 
directly integrate with cloud-native directory services. 

Interfaces and Usage 
Most platforms provide one or more programming interfaces. The most common for serving secrets 
in automated environments is an access API. A small and simple set of API calls is provided to 
authenticate a session, insert a record, locate a secret, and share a secret to a specific user or 
service. More advanced solutions also offer API access to advanced or administrative functions. 
Command-line access is also common, leveraging the same basic functions in a command-driven 
UNIX/Linux environment. A handful of tools also offer a graphical user interface, either directly or 
indirectly, sometimes through another open source project. 

Sharing Secrets 
The most interesting aspect of a secrets management system is how it shares secrets with users, 
services, or applications. How do you securely provide a secret to its intended recipient? How do 
you establish a chain of trust from the identity store to services which need secrets? As with 
repositories, discussed above, secrets in transit must be protected — which usually means 
encryption. There are many different ways to pass secrets around securely with mutual 
authentication. Let’s review the common methods.  

• Encrypted Network Communications: Authenticated services or users are passed secrets, 
often in cleartext, within an encrypted session. Some use Secure Sockets Layer (SSL), which is not 
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ideal, and we recommend avoiding those platforms if possible. Thankfully most use current 
versions of Transport Layer Encryption, which offers bi-directional authentication between the 
recipient and the secrets management server. When leveraging TLS these platforms build in basic 
Certificate Authority capabilities. While not a full-blown PKI server; their internal CA means they can 
create, issue, and revoke certificates; and therefore act as the central authority on cryptographic 
identities within a secret sharing system (e.g.: Docker Swarm, Kubernetes Pods, cloud autoscale 
group, etc.).  

• PKI: Several secrets management platforms combine external identity management with a Public 
Key Infrastructure to validate recipients of secrets and transmit PKI encrypted payloads. The 
platform determines who will receive a secret, and then encrypts the content with the recipient’s 
public key. This ensures that only the intended recipient can decrypt the secret using their private 
key. It also lessens or entirely removes the need to encrypt all network communications.  

• Temporary Files: When using containers it is common to share secrets by placing them in a 
memory-only filesystem, tmpfs in UNIX parlance. This enables a secrets management server to 
provision secrets to containers hosted on the same hardware. Access to this data is limited to 
applications on a single physical system. Because the data is stored only in memory, access is 
very fast and secrets disappear when the server is de-provisioned. The downside is that such 
secrets are often stored in cleartext, so great care must be taken to launch only authorized 
containers and to configure the namespace to prevent unauthorized applications from reading 
them. If malicious code is introduced to any container on the physical host, this model falls apart. 

• Wrapping: Some commercial platforms and cloud vendors use symmetric key encryption natively, 
with a new and unique key provisioned each time a service or agent is initialized. Similarly to the 
PKI scenario, secrets are encrypted — or wrapped — on demand with the recipient’s key, then 
transmitted as encrypted values. The key is ephemeral, just like the cloud service, and discarded 
when the agent or service is terminated. 

• Injection: In some cases secrets are provided automatically. When launching a virtual server the 
secret might be a configuration file provided at launch. Containers may be supplied an identity 
certificate which grants access and privileges within a swarm or pod. In this model each container 
in a pod or Kubelet could share the same set of secrets. The goal is to mitigate the risk of rogue 
code entering an environment and automatically gaining access to secrets. 

• Cleartext: Yes, unencrypted plain-text. We seriously cannot recommended secrets management 
systems which fail to protect secrets, instead sharing them as plain-text. For most organizations 
this is a nonstarter, because it prevents them from ensuring secrets stay secret. But you need to 
be aware this still happens — both as secrets are moved over the network, and shared in a 
common directory or file, under the dangerous assumption the directory or file is inherently secure. 
If you see this find a different product. 
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Advanced Features 

As the need for secrets management evolved, we began to see commercial secrets management 
products. These platforms are architected to support several of the major use cases discussed 
earlier, and typically offer more advanced features such as deep log creation and integration options, 
tighter integration with IAM services, secret generation, and secret revocation. As this segment 
matures we are beginning to see more advanced feature sets and better service integration so you 
need less glue code. Below is a list, in no particular order, of advanced features we have come 
across. 

• Managing and Administering Secrets: For any secrets management platform the concept of 
the authorization model comes into play. Identity Management and directory services typically act 
as the ‘system of record’ on what identities are allowed to read, or modify, update or delete 
identities. One aspect that differentiates enterprise class tools is the ability to delegate a 
management role for administering secrets and secrets access. Logging, storage, secret creation, 
recovery, and failover settings are becoming table stakes for corporate secrets management 
platforms, and should be accessible only through the management interface — not exposed to 
general system users. This is an important component as it provides the ability to set security 
policies on usage, often a required element for regulatory or internal risk and compliance policy 
(e.g.: Rotation, separation of duties, etc).  The ability for a machine or service to have the function 
of reading from storage, but not able to write or delete, would be one example. As we rely more 
and more upon automated services, it is more and more likely that the administration of secrets 
management will be held between humans and automated services, creating, updating and 
enforcing rules.  

• Provisioning Machine Identities: Automation is the fundamental reason secrets management is 
now an essential feature in development and IT environments. They must be able to securely 
bootstrap a service, container, or server, and identify it precisely within an otherwise identical 
group. Shocking though it may be, some products cannot provide this basic feature, or require 
secrets to be dropped into a shared file system, rather than issuing a unique secret directly to each 
machine or instance. You will want to carefully examine how machine identities are created and 
provisioned.  

• Secrets Creation: Secrets management platforms are now capable of creating and issuing SSL 
certificates, passwords, TLS certificates, identity tokens, encryption keys, and other useful items. 
In some cases these secrets can have a ‘sell-by’ date, after which the secret is no longer valid, for 
short-term access.  

• Revocation: This enables a secrets management system to retire or invalidate a certificate. This 
feature is commonly available in systems where the secrets manager also acts as an identity store 
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or Certificate Authority — such as in container orchestration environments — and therefore can 
revoke a client’s ability to communicate with other users and services.  

• Ephemeral Secrets: Things like containers, servers, and IaaS/PaaS functions are essentially 
ephemeral. Resiliency is provided by launching many instances of an application, simply replacing 
any which become unhealthy. This concept works for security as well, with the idea that 
provisioned secrets can be just as ephemeral as a cloud server. We can generate new ephemeral 
secrets for server instances or container classes as needed. If a secret is lost or a container fails 
we generate a new secret on demand. This is useful for identity certificates, encryption keys, and 
other types of secrets shared between several services. It’s also conducive to secrets and key 
rotation to aid in compliance requirements. These secrets are not stored long-term — instead the 
secrets manager keeps a dynamic list of which services have been issued which short-lived 
secrets. 

• Encryption as a Service: Some secrets management platforms encrypt payloads on request. A 
simple API call passes the payload in with a unique identifier: either the encryption key to use or 
the intended recipient — the secrets management platform serves as an encryption engine. This 
relieves developers from worrying about encryption libraries, random number generation, or other 
encryption esoterica. As we see more encryption vendors move into secrets management, expect 
to see significant overlap between key management and secrets management. 

• Audit Logs: In this day and age if you want to sell security software to enterprises, you had better 
offer audit logs. More and more platforms offer log files today, and some even offer syslog and/or 
JSON formats. The quality of the content and filtering remain issues in many cases, but we have 
reached a point where most secrets management tools include logging, at least.  However, not all 
solutions offer the ability to store audit logs in an immutable vault where they cannot be altered or 
accessed by unauthorized parties which is an important security requirement for most 
organizations. 

• Proxy Access: The line between Privileged Account Management (PAM) security and secrets 
management is beginning to blur. This capability essentially means that a secrets management 
service keeps access credentials secret, but provides a token (or role, in Amazon Web Services 
parlance) to authorize a requesting entity. 

We list all these features to help readers seeking to address specific use cases. Our goal is to help 
you understand the available capabilities and how they can help address your needs while satisfying 
your IT security requirements. We also want to help you understand why certain products work the 
way they do, and provide an idea of what to expect from the market. 
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Deployment Considerations 

We will close with a look at operational considerations for selecting a secrets management platform. 
Rather than a giant survey of products and how each works, we will focus on the facets which 
enable them to handle our use cases. Central questions include how these platforms deploy, how 
they provide scalability and resiliency, and how they integrate with the services they supply secrets 
to. To distinguish between products you need to understand why they were created, because core 
functions and deployment models are heavily influenced by each platform’s intended use. 

Classes of Products 

Secrets management platforms fall into two basic categories: general-purpose and single-purpose. 
General-purpose solutions can provide secrets of many types for multiple use cases. They can 
automatically provision secrets to just about any type of application — from sending username and 
password to a web page, to issuing API keys, to dynamic cloud workloads. Single-purpose options 
— commonly called ‘embedded or native’ because they install into another platform — are typically 
focused on a single use case. For example several embedded solutions focus on provisioning 
secrets to Docker containers, nesting into your orchestration manager (e.g.: Swarm, Kubernetes, 
DC/OS), etc. 

This distinction is critical because a product embedded into a container manager may not be 
suitable for non-container use cases. The good news is that many services are deployed this way, 
so embedded tools are still useful in many environments, and because they leverage existing 
infrastructure they tend to integrate well and scale easily. These platforms typically leverage specific 
constructs of their orchestration manager or container environment to provide secrets. They also 
tend to make assumptions about how secrets are used — for example they might leverage 
Kubernetes’ namespace to enforce policy or the UNIX namespace to distribute secrets. Because 
containers are ephemeral, ephemeral or ‘dynamic’ secrets are often preferred for these secrets 
managers. The bad news is that some embedded tools assume your cluster is a secure 
environment, within which they can safely pass and store secrets in cleartext. Other embedded tools 
fully encrypt secrets, but may not support diverse types of secrets or integrate with non-
containerized applications. 
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A product focused on a single use case may be what you need, but keep in mind that automation 
occurs across many different facets of development and IT, and it may be limiting. General-purpose 
products are typically more flexible and may take more time and to effort set up, but provide a 
breadth of functions not generally found in tools created specifically for container orchestration or 
password management.  

Deployment Models 

Solitary Servers 
Common among early tools focused on personal productivity, solitary servers are exactly what their 
name implies. They typically consist of a central secret storage database and a single server 
instance that manages it. Basically all functions — including user interfaces, storage management, 
key management, authentication, and policy management — are handled by a single service. These 
tools are commonly used via command-line interfaces or API, and work best for a small number of 
systems. 

Client-Server Architecture 
The label for this model varies from vendor to vendor. Primary/Secondary, Manager/Worker, Master/
Slave, and Service/Agent are just some terms to describe the hierarchical relationship between the 
principal service which manages the repository of secrets, and the client which works with calling 
applications. This is by far the most common architecture. There is a repository where encrypted 
secrets are stored, usually a database which is shared or replicated across one or more manager 
nodes. Each manager can work with one or more agents to support their service or application. 

This architecture helps provide scalability and reliability by spawning new clients and servers as 
needed. These products often deploy each component as a container, leveraging the same 
infrastructure as the applications they serve. Many embedded products use this model to scale. 

When evaluating solutions based on a client-server architecture, it is important to understand how 
each solution handles high availability and disaster recovery since solutions vary on their ability to 
handle various failure scenarios and the degree of architectural complexity. 

We discussed earlier how secrets are shared between a secrets management tool and a recipient, 
whether human or machine. And we covered integration with container management and 
orchestration systems, as many tools were designed to do. It’s time to mention the other common 
integration points and how each works.  Note that solutions vary in terms of the amount of effort or 
glue code required to integrate the secrets management platform with various systems. 

• Build Servers: Tools like Jenkins and Bamboo are used by software development teams to 
automate building and verification of new code. These tools commonly access one or more 
repositories to get updated code, grab automation scripts and libraries to set up new 
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environments, connect to virtual or cloud services to run tests, and sign code before moving 
tested code into another repository or container registry. Each action requires specific credentials 
before it can take place. Secrets management integration is either performed as a plug-in 
component of the build server or as an external service with which it communicates. 

• IT Automation: Automated builds and the power of build managers have vastly improved 
development productivity, but orchestration tools are what move code at warp speed from 
developer desktops into production. Chef/Puppet/Ansible are the trio of popular orchestration 
tools automating IT and development tasks, the backbone of Continuous Integration and 
Continuous Deployment. Virtually any programmable IT operation can be performed with these 
tools, including most VMware and all cloud services functions offered through API. As with build 
servers, secrets management typically installs as a component or add-on module of the 
orchestration tool, or runs as a service. 

• Public Cloud Support: The public cloud is a special case. Conceptually, every use case outlined 
in this series applies to cloud services. And because every service in a public cloud is API-enabled, 
it is the ideal playground for secrets management tools. What’s special about cloud services is how 
integration is managed: most secrets management tools which support the cloud directly integrate 
with either cloud-native identity systems, cloud-native key management, or both. This offers 
advantages because secrets can then be provisioned in any region, to any supported service 
within that region, leveraging existing identities. The cloud service can fully define which users can 
access which secrets. Secrets management can then augment both security and compliance by 
placing additional usage policies on secrets, or wrapping them in another layer of encryption. 
There are also cases where customers do not want full integration with their cloud services, 
preferring to keep certain secrets and encryption keys out of the hands of their cloud service 
vendor so the vendor cannot be compelled to turn them over by court order.  The other downside 
of implementing a cloud-specific solution is not having the flexibility of changing cloud providers.  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Summary 

As we leverage cloud services and rely more heavily on automation to provision applications and IT 
resources, we find more and more need to securely get secrets to applications and scripts. The 
need for Secrets Management has been born out of the need to automate and orchestrate IT and 
applications without humans to provide credentials. Developers are aware that encryption keys and 
API certificates sit unprotected on disk, but their focus is on delivering code faster and more easily. It 
is time to make it safer too. Secrets Management tools can solve the problem, and fit the 
environments where secrets are needed. They include API to enable inclusion in scripts and 
automated services, fitting perfectly within a DevOps operational model.   

If you have any questions on this topic, or want to discuss your situation specifically, feel free to send 
us a note at info@securosis.com or post a question on our blog. 

Securosis — Understanding and Selecting Secrets Management Platforms 	 "18

mailto:?subject=


About the Analyst 

Adrian Lane, Analyst/CTO 

Adrian Lane is a Senior Security Strategist with 25 years of industry experience. He brings over a 
decade of C-level executive expertise to the Securosis team. Mr. Lane specializes in database 
security, secure application development and data security. With extensive experience as a member 
of the vendor community (including positions at Ingres and Oracle), in addition to time as an IT 
customer in the CIO role, Adrian brings a business-oriented perspective to security implementations. 
Prior to joining Securosis, Adrian was CTO at database security firm IPLocks, Vice President of 
Engineering at Touchpoint, and CTO of the secure payment and digital rights management firm 
Transactor/Brodia. Adrian also blogs for Dark Reading and is a regular contributor to Information 
Security Magazine. Mr. Lane is a Computer Science graduate of the University of California at 
Berkeley with post-graduate work in operating systems at Stanford University.  

Securosis — Understanding and Selecting Secrets Management Platforms 	 "19



About Securosis 

Securosis, LLC is an independent research and analysis firm dedicated to thought leadership, objectivity, and 
transparency. Our analysts have all held executive level positions and are dedicated to providing high-value, 
pragmatic advisory services. Our services include: 

• The Securosis Nexus: The Securosis Nexus is an online environment to help you get your job done better 
and faster. It provides pragmatic research on security topics that tells you exactly what you need to know, 
backed with industry-leading expert advice to answer your questions. The Nexus was designed to be fast 
and easy to use, and to get you the information you need as quickly as possible. Access it at <https://
nexus.securosis.com/>. 

• Primary research publishing: We currently release the vast majority of our research for free through our 
blog, and archive it in our Research Library. Most of these research documents can be sponsored for 
distribution on an annual basis. All published materials and presentations meet our strict objectivity 
requirements and conform to our Totally Transparent Research policy. 

• Research products and strategic advisory services for end users: Securosis will be introducing a line 
of research products and inquiry-based subscription services designed to assist end user organizations in 
accelerating project and program success. Additional advisory projects are also available, including product 
selection assistance, technology and architecture strategy, education, security management evaluations, and 
risk assessment. 

• Retainer services for vendors: Although we will accept briefings from anyone, some vendors opt for a 
tighter, ongoing relationship. We offer a number of flexible retainer packages. Services available as part of a 
retainer package include market and product analysis and strategy, technology guidance, product evaluation, 
and merger and acquisition assessment. Even with paid clients, we maintain our strict objectivity and 
confidentiality requirements. More information on our retainer services (PDF) is available. 

• External speaking and editorial: Securosis analysts frequently speak at industry events, give online 
presentations, and write and/or speak for a variety of publications and media. 

• Other expert services: Securosis analysts are available for other services as well, including Strategic 
Advisory Days, Strategy Consulting engagements, and Investor Services. These tend to be customized to 
meet a client’s particular requirements. 

Our clients range from stealth startups to some of the best known technology vendors and end users. Clients 
include large financial institutions, institutional investors, mid-sized enterprises, and major security vendors. 

Additionally, Securosis partners with security testing labs to provide unique product evaluations that combine in-
depth technical analysis with high-level product, architecture, and market analysis. For more information about 
Securosis, visit our website: <http://securosis.com/>.
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