
Understanding and Selecting
a Secrets Management
Platform

 

Version 1.0	 	  
Released: January, 2018

Securosis, L.L.C. 515 E. Carefree Highway Suite #766 Phoenix, AZ 85085 T 602-412-3051
info@securosis.com www.securosis.com

mailto:info@securosis.com?subject=
http://www.securosis.com

Author’s Note
The content in this report was developed independently of any sponsors. It is based on material
originally posted on the Securosis blog, but has been enhanced, reviewed, and professionally edited.

Special thanks to Chris Pepper for editing and content support.

Licensed by CyberArk

"

CyberArk (NASDAQ: CYBR) is the global leader in privileged account security, a critical layer of IT
security to protect data, infrastructure and assets across the enterprise, in the cloud and throughout
the DevOps pipeline. CyberArk delivers the industry’s most complete solution to reduce risk created
by privileged credentials and secrets. The company is trusted by the world’s leading organizations,
including more than 50 percent of the Fortune 100, to protect against external attackers and
malicious insiders. A global company, CyberArk is headquartered in Petach Tikva, Israel, with U.S.
headquarters located in Newton, Mass. The company also has offices throughout the Americas,
EMEA, Asia Pacific and Japan. To learn more about CyberArk, visit www.cyberark.com, read the
CyberArk blogs or follow on Twitter via @CyberArk, LinkedIn or Facebook.

Copyright
This report is licensed under Creative Commons Attribution-Noncommercial-No Derivative Works
3.0.

"

http://creativecommons.org/licenses/by-nc-nd/3.0/us/  

Securosis — Understanding and Selecting a Secrets Management Platforms	 "2

http://securosis.com
http://www.cyberark.com/
http://investors.cyberark.com/phoenix.zhtml?c=253582&p=irol-irhome
http://www.cyberark.com/
https://www.cyberark.com/press/#blogs
https://twitter.com/CyberArk
https://www.linkedin.com/company/cyber-ark-software
https://www.facebook.com/CyberArk
http://creativecommons.org/licenses/by-nc-nd/3.0/us/

Understanding and Selecting a
Secrets Management Platform
Table of Contents

Understanding and Selecting a Secrets Management Platform 1
Author’s Note 2
Licensed by CyberArk 2
Copyright 2

Understanding and Selecting a Secrets Management Platform 3

Table of Contents 3

Introduction 4

The Challenge of Machine Identities 5

Use Cases 7
Principal Customer Use Cases 7

Features and Functions 10
Core Features 10
Advanced Features 13

Deployment Considerations 15
Classes of Products 15
Deployment Models 16

Summary 18

About the Analyst 19

About Securosis 20

Securosis — Understanding and Selecting Secrets Management Platforms 	 "3

Introduction

Secrets Management platforms do exactly what the name implies; they store, manage, and provide
secrets. The technology addresses several problems most security folks don’t yet know they have.
As development teams leverage automation and orchestration techniques they create new security
issues which then must be tackled. Our reliance on automation of cloud services is making
application and IT services faster and more resilient, but with that advancement comes a need to
provide permissions to machines and software instead of just people. In some ways this is the new
iteration of the identity management problem from the early 2000s, magnified across personal
devices and cloud computing infrastructure.

And that is the genesis of the problem: Developers have automated software build and testing, and
IT automates provisioning, but both camps still believe security slows them down. Continuous
Integration, Continuous Deployment, and DevOps practices all improve agility, but also introduce
security risks — including storing secrets in source code repositories and leaving credentials sitting
around. This bad habit leaves every piece of software that goes into production is at risk!

All software needs credentials to access other resources; to communicate with databases, to obtain
encryption keys, and access other services. But these access privileges must be carefully protected
lest they be abused by attackers! The problem is the intersection of knowing what rights to
provision, what format the software can accept, and then securely provision access rights when a
human is not — or cannot — be directly involved. Developers do integrate with sources for identity
— such as directory services — but are usually unaware technologies exist that helps them
distribute credentials to their intended destinations.

To address these changes, powerful utilities and platforms have been developed to secure sensitive
data, and secure distribution of privileges. The term for this new class of product is “Secrets
Management”; and it is changing how we deliver identity, secrets, and tokens — as well as the way
we validate systems for automated establishment of trust. In fact Secrets Management is a core
piece to move DevOps into SecDevOps. This research will explore why this is an issue for many
organizations, what sorts of problems these new platforms tackle, and how they work in newer
environments.  

Securosis — Understanding and Selecting Secrets Management Platforms 	 "4

The Challenge of Machine
Identit ies

Obtaining secrets is essential for automation scripts to function, but many organizations cling to the
classic (simple) mode of operation: place secrets in files or embed them into scripts so tasks can
complete without human intervention. Developers understand this is problematic and that this is a
rapidly expanding form of technical and security debt that is being swept under the rug only to have
it reappear in an audit or after a breach event. And they certainly do not go out of their way to tell
security about how they provision secrets, so most CISOs and security architects are unaware of
this emerging issue until an event occurs.

The problem is not new. Administrators have been putting secrets in unsecured files for decades. No
administrator wants to be called into work in the middle of the night to enter a password so an
application can restart. IT administrators routinely store encryption keys in files so an OS or
application can access them when needed. Database administrators place encryption keys and
passwords in files to facilitate automated reboots. Or they did until corporate networks came under
even more attack and this industry-wide practice was disallowed. Since then we have relied upon
everything from manual intervention, to key management servers, and even hardware dongles to
provide a root of trust to establish identity and provision systems. But the old approaches don’t
provide the required security in new compute and development environments – and the stakes are
much higher because of the dynamic nature of how we provide software and services.

It sounds cliche, sure, but IT and application environments are genuinely undergoing radical change.
New ways of deploying applications as microservices and into containers are improving our ability to
cost-effectively scale services and large systems. Software-defined IT stacks and granular control
over services through APIs provide tremendous agility advantages. Modern operational models such
as Continuous Integration and DevOps amplify these advantages, bringing applications and
infrastructure to market faster and more reliably.

Perhaps the largest change currently affecting software development and IT is cloud computing.The
on-demand and elastic nature of cloud-based services offers huge advantages, predicated on
automated infrastructure defined as software. The cloud is not a necessary component of these
other advances, but it makes them even more powerful. Leveraging all these advances together, a
few lines of code can launch —or shut down — an entire (virtual) data center in minutes, with
minimal human involvement or effort.

Securosis — Understanding and Selecting Secrets Management Platforms 	 "5

Alongside their benefits, automation and orchestration raise new security concerns. The major issue
today is securely sharing secret information. This is especially problematic where ‘machines’ are not
something sitting in a rack at a co-location facility, but instead an ephemeral instance of a machine
— or perhaps thousands of instances running simultaneously, potentially being created and
destroyed by the dozen due to the transitory vagaries of demand. How can we track which server,
virtual machine, or container is which, or what set of permissions to provide each? And the scope of
the problem broadens as we extend automation and orchestration across teams. Development
teams need to share data, configurations, and access keys across and between teams to cooperate
on application development and testing. Automated build servers need access to source code
control, API gateways, and user roles to accomplish their tasks. Servers need access to encrypted
disks, applications need to access databases, and containers must be provisioned with privileges as
they start up. Automated services cannot wait around for users to type in passwords or provide
credentials! So we need new agile and automated techniques to provision data, identity, and access
rights. 

Securosis — Understanding and Selecting Secrets Management Platforms 	 "6

Use Cases

There are several reasons secrets management is needed and use cases are diverse. That said, the
key issue to address is to securely provision access rights to services, which is largely absent today.
Instead, secrets are typically kept in cleartext within documents and applications. These issues
become more pressing as large enterprise adopt these more agile deployment methods, and do so
at scale. Most firms already rely upon identity stores systems to maintain a central point of control
over identity and access rights. What they lack is the distribution mechanism to consistently support
security policies across mixed/complex environments found at large enterprises, both on-premises
and public cloud environments.

Principal Customer Use Cases

1. API Gateways and Access Keys: Application Programming Interfaces are how software
programs interact with other software and services. These API form the basic interface for
coordinated operation. To use an API you must first authenticate yourself — or your code — to
an API gateway. This is typically handled by providing an access key, token, or response to a
cryptographic challenge. For ease of automation many developers hard-code access keys,
leaving themselves vulnerable to simple file or code inspection. And all too often, even kept in a
private file on a developer’s desktop, keys are accidentally shared or posted — sometimes to
public code repositories. The goal here is to keep access keys secret, while still provisioning
them to valid applications as needed.

2. Services: Applications are seldom stand-alone entities. They are typically comprised of many
different components, databases, and supporting services. With current application
architectures, we launch many instances of an application to ensure scalability and resiliency. As
we launch applications, whether in containers or atop virtual machines or servers, we must
provision them with configuration data, identity certificates, and tokens. How does a newly
created virtual machine, container, or application discover its identity and access the resources it
needs? How can we uniquely identify a specific container instance among a sea of clones? In the
race to fully automate their environments, organizations have automated so fast they tend to get
out over their skis, with little security and a decided imbalance towards build speed. Developers
typically place credentials in configuration files which are conveniently available to applications
and servers on startup. We find production credentials shared with quality assurance and
developer systems, which are often much less secure and unmonitored. They are also frequently

Securosis — Understanding and Selecting Secrets Management Platforms 	 "7

shared with other applications and services which should not have access. The goal is to
segregate credentials without causing breakage or unacceptable barriers.

3. Build Automation: Most software build environments are insecure. Developers feel security
within development slows them down, so they often bypass security controls in development
processes. Build environments are normally under developer control, on development-owned
servers, so few outsiders know where they are or how they operate. Nightly build servers have
been around for over a decade, with steadily increasing automation to improve agility. As things
speed up, we remove human oversight. As new code, formation templates, and scripts are
checked into repositories, build servers like Jenkins and Bamboo automatically regenerate
applications. But they also validate new additions running quality assurance and security tests,
halting the process should these tests fail. This means quality tests and security tests are part of
the build process, and no longer slow development process, rather act as a safeguard so that
bad code no longer makes it into production. Provisioning of secrets into the process, because it
is also part of the automation process, is just as agile and automatic as building and launching
applications. We define, through policies, the rights to be granted, ensuring we deliver code and
services securely and without need for human intervention.

4. Provisioning Machine Identities: As we leverage cloud services our definition of ‘server’
changes. The cloud uses the concepts of compute, network, and storage as services to be
allocated as needed and retired when not. So what we previously thought of as on-premise
‘machines’ have become ephemeral instances of a machine, often both virtual and multiple;
represented as a server image, a container, or some similar concept. But because we fluidly
bring these ‘machines’ up and down, it has become very difficult to keep track of which server
responded to which request, so we need some way to issue them unique identities. We might
need to find a potentially unhealthy or compromised machine instance, and conduct incident
response, but we cannot blindly take the same remediation action against every instance, so
targeting a unique identity is critical.

5. Encrypted Data: Providing encryption keys to unlock encrypted volumes and file stores is a
common task, both on-premise and for cloud services. Traditionally we used key management
servers designed to handle secure distribution and management of keys, but a number of
commercial key management tools (both hardware and software) have not yet been augmented
for Infrastructure or Platform as a Service. Additionally, developers now demand better API
integration for seamless use with applications. This capability is frequently lacking, so some
teams use cloud-native key management, while others opt for secrets management as a
replacement.

6. Sharing: Collaboration software has helped development, quality assurance, and product
management teams cooperate on projects — even though people work remotely or enterprises
with teams on different continents. In some contexts, the issue is how to securely share
information across a team of remote developers, or share secret data across multiple data
centers without exposing it in cleartext. The databases that hold data for chat and collaboration

Securosis — Understanding and Selecting Secrets Management Platforms 	 "8

services tend not to be very secure, and texting certificates to a co-worker is a non-starter. The
solution is a robust central repository, where a select group of users can store and retrieve
secrets.

Of course there are plenty more use cases. In interviews, we discussed everything from simple
passwords to bitcoin wallets. But for this research we needed to focus on the issues developers and
IT security folks asked about.  

Securosis — Understanding and Selecting Secrets Management Platforms 	 "9

Features and Functions

It’s time to discuss the core features of a secrets management platform. As this is a new class of
product there is little feature consistency in the market. Many are graciously referred to as ‘products’
and are little more than personal productivity tools. Full-function, enterprise class platforms are the
exception. However, there are basic functions every secrets management platform needs to
address; secure storage of secrets, provisioning secrets, identity management, and API access to
aid programatic integration. When considering what you need from such a platform the key to keep
in mind is that most of them were originally developed to perform a single very specific task — such
as injecting secrets into containers at runtime, or integrating tightly with a Jenkins build server, or
supplementing a cloud identity service. Those do one thing well, but rarely address multiple use
cases and create unmanaged security islands.

Now let’s take a closer look at key features.

Core Features

Secrets management platforms are software applications designed to support other applications
with a very important task: securely storing and passing secrets to the correct parties. The most
important characteristic of a secrets management platform is that it must never leave secret
information sitting around in cleartext! Secure storage is Job #1.

Storing Secrets
Almost every tool we reviewed provides one or more encrypted repositories — which many products
call a ‘vault’ — to store secret information. As you insert or update secrets in the repository, they are
automatically encrypted prior to being written to storage. Shocking though it may be, at least one
product we reviewed does not actually encrypt secrets — instead secrets are stores in plain-text.
This should disqualify it from consideration. Fortunately most vaults use vetted implementations of
well-known algorithms to encrypt secrets. But it is worth vetting any implementation, with your
regulatory and contractual requirements in mind, to ensure the vault meets your security
requirements.

With the exception of select platforms which provide ‘ephemeral secrets’ (more on these later), all
secret data is stored within these repositories for future use. Nothing is stored in cleartext. How each
platform associates secrets with a given user identifier, credential, or role varies widely. Each platform
has its own way of managing secrets internally, but they typically use a unique identifier or key-value

Securosis — Understanding and Selecting Secrets Management Platforms 	 "10

pair to identify each secret. Some store multiple versions of each secret, so changes over time can
be recalled if necessary for recovery or auditing, but the details are part of their secret sauce.

Repository structures vary widely between offerings. Some store data in simple text or JSON files.
Some use key-value pairs in a NoSQL style database. Others use a relational or NoSQL database. A
couple employ multiple repository types to increase isolation between secrets and/or use cases. The
repository architecture is seldom determined primarily by strong security — more influential drivers
include low cost and ease of use for product developers. And while a repository of any type can be
secured, the choice of repository impacts scalability, how replication is performed, and how quickly
you can find and provision secrets.

Another consideration is which data types a repository can handle. Most platforms we reviewed can
handle any type of data you want to store: string values, text fields, N-tuple pairings, and binary
data. Indexing is often performed automatically as you insert items, to speed lookup and retrieval
later. Some platforms really only handle strings, which simplifies API but limits usability. Again,
products tailored to a particular use case may be unsuitable for other uses or across teams.

Identity and Access Management
Most secrets management platforms concede IAM to external Active Directory or LDAP services,
which makes sense because most firms already have an IAM infrastructure in place. Users
authenticate to the directory store to gain access, and the server leverages existing roles to
determine which functions and secrets the user is authorized to access. Most platforms are also
able to use a third-party Cloud Identity Service or Privileged Access Management service, or to
directly integrate with cloud-native directory services.

Interfaces and Usage
Most platforms provide one or more programming interfaces. The most common for serving secrets
in automated environments is an access API. A small and simple set of API calls is provided to
authenticate a session, insert a record, locate a secret, and share a secret to a specific user or
service. More advanced solutions also offer API access to advanced or administrative functions.
Command-line access is also common, leveraging the same basic functions in a command-driven
UNIX/Linux environment. A handful of tools also offer a graphical user interface, either directly or
indirectly, sometimes through another open source project.

Sharing Secrets
The most interesting aspect of a secrets management system is how it shares secrets with users,
services, or applications. How do you securely provide a secret to its intended recipient? How do
you establish a chain of trust from the identity store to services which need secrets? As with
repositories, discussed above, secrets in transit must be protected — which usually means
encryption. There are many different ways to pass secrets around securely with mutual
authentication. Let’s review the common methods.

• Encrypted Network Communications: Authenticated services or users are passed secrets,
often in cleartext, within an encrypted session. Some use Secure Sockets Layer (SSL), which is not

Securosis — Understanding and Selecting Secrets Management Platforms 	 "11

ideal, and we recommend avoiding those platforms if possible. Thankfully most use current
versions of Transport Layer Encryption, which offers bi-directional authentication between the
recipient and the secrets management server. When leveraging TLS these platforms build in basic
Certificate Authority capabilities. While not a full-blown PKI server; their internal CA means they can
create, issue, and revoke certificates; and therefore act as the central authority on cryptographic
identities within a secret sharing system (e.g.: Docker Swarm, Kubernetes Pods, cloud autoscale
group, etc.).

• PKI: Several secrets management platforms combine external identity management with a Public
Key Infrastructure to validate recipients of secrets and transmit PKI encrypted payloads. The
platform determines who will receive a secret, and then encrypts the content with the recipient’s
public key. This ensures that only the intended recipient can decrypt the secret using their private
key. It also lessens or entirely removes the need to encrypt all network communications.

• Temporary Files: When using containers it is common to share secrets by placing them in a
memory-only filesystem, tmpfs in UNIX parlance. This enables a secrets management server to
provision secrets to containers hosted on the same hardware. Access to this data is limited to
applications on a single physical system. Because the data is stored only in memory, access is
very fast and secrets disappear when the server is de-provisioned. The downside is that such
secrets are often stored in cleartext, so great care must be taken to launch only authorized
containers and to configure the namespace to prevent unauthorized applications from reading
them. If malicious code is introduced to any container on the physical host, this model falls apart.

• Wrapping: Some commercial platforms and cloud vendors use symmetric key encryption natively,
with a new and unique key provisioned each time a service or agent is initialized. Similarly to the
PKI scenario, secrets are encrypted — or wrapped — on demand with the recipient’s key, then
transmitted as encrypted values. The key is ephemeral, just like the cloud service, and discarded
when the agent or service is terminated.

• Injection: In some cases secrets are provided automatically. When launching a virtual server the
secret might be a configuration file provided at launch. Containers may be supplied an identity
certificate which grants access and privileges within a swarm or pod. In this model each container
in a pod or Kubelet could share the same set of secrets. The goal is to mitigate the risk of rogue
code entering an environment and automatically gaining access to secrets.

• Cleartext: Yes, unencrypted plain-text. We seriously cannot recommended secrets management
systems which fail to protect secrets, instead sharing them as plain-text. For most organizations
this is a nonstarter, because it prevents them from ensuring secrets stay secret. But you need to
be aware this still happens — both as secrets are moved over the network, and shared in a
common directory or file, under the dangerous assumption the directory or file is inherently secure.
If you see this find a different product.

Securosis — Understanding and Selecting Secrets Management Platforms 	 "12

Advanced Features

As the need for secrets management evolved, we began to see commercial secrets management
products. These platforms are architected to support several of the major use cases discussed
earlier, and typically offer more advanced features such as deep log creation and integration options,
tighter integration with IAM services, secret generation, and secret revocation. As this segment
matures we are beginning to see more advanced feature sets and better service integration so you
need less glue code. Below is a list, in no particular order, of advanced features we have come
across.

• Managing and Administering Secrets: For any secrets management platform the concept of
the authorization model comes into play. Identity Management and directory services typically act
as the ‘system of record’ on what identities are allowed to read, or modify, update or delete
identities. One aspect that differentiates enterprise class tools is the ability to delegate a
management role for administering secrets and secrets access. Logging, storage, secret creation,
recovery, and failover settings are becoming table stakes for corporate secrets management
platforms, and should be accessible only through the management interface — not exposed to
general system users. This is an important component as it provides the ability to set security
policies on usage, often a required element for regulatory or internal risk and compliance policy
(e.g.: Rotation, separation of duties, etc). The ability for a machine or service to have the function
of reading from storage, but not able to write or delete, would be one example. As we rely more
and more upon automated services, it is more and more likely that the administration of secrets
management will be held between humans and automated services, creating, updating and
enforcing rules.

• Provisioning Machine Identities: Automation is the fundamental reason secrets management is
now an essential feature in development and IT environments. They must be able to securely
bootstrap a service, container, or server, and identify it precisely within an otherwise identical
group. Shocking though it may be, some products cannot provide this basic feature, or require
secrets to be dropped into a shared file system, rather than issuing a unique secret directly to each
machine or instance. You will want to carefully examine how machine identities are created and
provisioned.

• Secrets Creation: Secrets management platforms are now capable of creating and issuing SSL
certificates, passwords, TLS certificates, identity tokens, encryption keys, and other useful items.
In some cases these secrets can have a ‘sell-by’ date, after which the secret is no longer valid, for
short-term access.

• Revocation: This enables a secrets management system to retire or invalidate a certificate. This
feature is commonly available in systems where the secrets manager also acts as an identity store

Securosis — Understanding and Selecting Secrets Management Platforms 	 "13

or Certificate Authority — such as in container orchestration environments — and therefore can
revoke a client’s ability to communicate with other users and services.

• Ephemeral Secrets: Things like containers, servers, and IaaS/PaaS functions are essentially
ephemeral. Resiliency is provided by launching many instances of an application, simply replacing
any which become unhealthy. This concept works for security as well, with the idea that
provisioned secrets can be just as ephemeral as a cloud server. We can generate new ephemeral
secrets for server instances or container classes as needed. If a secret is lost or a container fails
we generate a new secret on demand. This is useful for identity certificates, encryption keys, and
other types of secrets shared between several services. It’s also conducive to secrets and key
rotation to aid in compliance requirements. These secrets are not stored long-term — instead the
secrets manager keeps a dynamic list of which services have been issued which short-lived
secrets.

• Encryption as a Service: Some secrets management platforms encrypt payloads on request. A
simple API call passes the payload in with a unique identifier: either the encryption key to use or
the intended recipient — the secrets management platform serves as an encryption engine. This
relieves developers from worrying about encryption libraries, random number generation, or other
encryption esoterica. As we see more encryption vendors move into secrets management, expect
to see significant overlap between key management and secrets management.

• Audit Logs: In this day and age if you want to sell security software to enterprises, you had better
offer audit logs. More and more platforms offer log files today, and some even offer syslog and/or
JSON formats. The quality of the content and filtering remain issues in many cases, but we have
reached a point where most secrets management tools include logging, at least. However, not all
solutions offer the ability to store audit logs in an immutable vault where they cannot be altered or
accessed by unauthorized parties which is an important security requirement for most
organizations.

• Proxy Access: The line between Privileged Account Management (PAM) security and secrets
management is beginning to blur. This capability essentially means that a secrets management
service keeps access credentials secret, but provides a token (or role, in Amazon Web Services
parlance) to authorize a requesting entity.

We list all these features to help readers seeking to address specific use cases. Our goal is to help
you understand the available capabilities and how they can help address your needs while satisfying
your IT security requirements. We also want to help you understand why certain products work the
way they do, and provide an idea of what to expect from the market.

Securosis — Understanding and Selecting Secrets Management Platforms 	 "14

Deployment Considerations

We will close with a look at operational considerations for selecting a secrets management platform.
Rather than a giant survey of products and how each works, we will focus on the facets which
enable them to handle our use cases. Central questions include how these platforms deploy, how
they provide scalability and resiliency, and how they integrate with the services they supply secrets
to. To distinguish between products you need to understand why they were created, because core
functions and deployment models are heavily influenced by each platform’s intended use.

Classes of Products

Secrets management platforms fall into two basic categories: general-purpose and single-purpose.
General-purpose solutions can provide secrets of many types for multiple use cases. They can
automatically provision secrets to just about any type of application — from sending username and
password to a web page, to issuing API keys, to dynamic cloud workloads. Single-purpose options
— commonly called ‘embedded or native’ because they install into another platform — are typically
focused on a single use case. For example several embedded solutions focus on provisioning
secrets to Docker containers, nesting into your orchestration manager (e.g.: Swarm, Kubernetes,
DC/OS), etc.

This distinction is critical because a product embedded into a container manager may not be
suitable for non-container use cases. The good news is that many services are deployed this way,
so embedded tools are still useful in many environments, and because they leverage existing
infrastructure they tend to integrate well and scale easily. These platforms typically leverage specific
constructs of their orchestration manager or container environment to provide secrets. They also
tend to make assumptions about how secrets are used — for example they might leverage
Kubernetes’ namespace to enforce policy or the UNIX namespace to distribute secrets. Because
containers are ephemeral, ephemeral or ‘dynamic’ secrets are often preferred for these secrets
managers. The bad news is that some embedded tools assume your cluster is a secure
environment, within which they can safely pass and store secrets in cleartext. Other embedded tools
fully encrypt secrets, but may not support diverse types of secrets or integrate with non-
containerized applications.

Securosis — Understanding and Selecting Secrets Management Platforms 	 "15

A product focused on a single use case may be what you need, but keep in mind that automation
occurs across many different facets of development and IT, and it may be limiting. General-purpose
products are typically more flexible and may take more time and to effort set up, but provide a
breadth of functions not generally found in tools created specifically for container orchestration or
password management.

Deployment Models

Solitary Servers
Common among early tools focused on personal productivity, solitary servers are exactly what their
name implies. They typically consist of a central secret storage database and a single server
instance that manages it. Basically all functions — including user interfaces, storage management,
key management, authentication, and policy management — are handled by a single service. These
tools are commonly used via command-line interfaces or API, and work best for a small number of
systems.

Client-Server Architecture
The label for this model varies from vendor to vendor. Primary/Secondary, Manager/Worker, Master/
Slave, and Service/Agent are just some terms to describe the hierarchical relationship between the
principal service which manages the repository of secrets, and the client which works with calling
applications. This is by far the most common architecture. There is a repository where encrypted
secrets are stored, usually a database which is shared or replicated across one or more manager
nodes. Each manager can work with one or more agents to support their service or application.

This architecture helps provide scalability and reliability by spawning new clients and servers as
needed. These products often deploy each component as a container, leveraging the same
infrastructure as the applications they serve. Many embedded products use this model to scale.

When evaluating solutions based on a client-server architecture, it is important to understand how
each solution handles high availability and disaster recovery since solutions vary on their ability to
handle various failure scenarios and the degree of architectural complexity.

We discussed earlier how secrets are shared between a secrets management tool and a recipient,
whether human or machine. And we covered integration with container management and
orchestration systems, as many tools were designed to do. It’s time to mention the other common
integration points and how each works. Note that solutions vary in terms of the amount of effort or
glue code required to integrate the secrets management platform with various systems.

• Build Servers: Tools like Jenkins and Bamboo are used by software development teams to
automate building and verification of new code. These tools commonly access one or more
repositories to get updated code, grab automation scripts and libraries to set up new

Securosis — Understanding and Selecting Secrets Management Platforms 	 "16

environments, connect to virtual or cloud services to run tests, and sign code before moving
tested code into another repository or container registry. Each action requires specific credentials
before it can take place. Secrets management integration is either performed as a plug-in
component of the build server or as an external service with which it communicates.

• IT Automation: Automated builds and the power of build managers have vastly improved
development productivity, but orchestration tools are what move code at warp speed from
developer desktops into production. Chef/Puppet/Ansible are the trio of popular orchestration
tools automating IT and development tasks, the backbone of Continuous Integration and
Continuous Deployment. Virtually any programmable IT operation can be performed with these
tools, including most VMware and all cloud services functions offered through API. As with build
servers, secrets management typically installs as a component or add-on module of the
orchestration tool, or runs as a service.

• Public Cloud Support: The public cloud is a special case. Conceptually, every use case outlined
in this series applies to cloud services. And because every service in a public cloud is API-enabled,
it is the ideal playground for secrets management tools. What’s special about cloud services is how
integration is managed: most secrets management tools which support the cloud directly integrate
with either cloud-native identity systems, cloud-native key management, or both. This offers
advantages because secrets can then be provisioned in any region, to any supported service
within that region, leveraging existing identities. The cloud service can fully define which users can
access which secrets. Secrets management can then augment both security and compliance by
placing additional usage policies on secrets, or wrapping them in another layer of encryption.
There are also cases where customers do not want full integration with their cloud services,
preferring to keep certain secrets and encryption keys out of the hands of their cloud service
vendor so the vendor cannot be compelled to turn them over by court order. The other downside
of implementing a cloud-specific solution is not having the flexibility of changing cloud providers.  

Securosis — Understanding and Selecting Secrets Management Platforms 	 "17

Summary

As we leverage cloud services and rely more heavily on automation to provision applications and IT
resources, we find more and more need to securely get secrets to applications and scripts. The
need for Secrets Management has been born out of the need to automate and orchestrate IT and
applications without humans to provide credentials. Developers are aware that encryption keys and
API certificates sit unprotected on disk, but their focus is on delivering code faster and more easily. It
is time to make it safer too. Secrets Management tools can solve the problem, and fit the
environments where secrets are needed. They include API to enable inclusion in scripts and
automated services, fitting perfectly within a DevOps operational model.

If you have any questions on this topic, or want to discuss your situation specifically, feel free to send
us a note at info@securosis.com or post a question on our blog.

Securosis — Understanding and Selecting Secrets Management Platforms 	 "18

mailto:?subject=

About the Analyst

Adrian Lane, Analyst/CTO

Adrian Lane is a Senior Security Strategist with 25 years of industry experience. He brings over a
decade of C-level executive expertise to the Securosis team. Mr. Lane specializes in database
security, secure application development and data security. With extensive experience as a member
of the vendor community (including positions at Ingres and Oracle), in addition to time as an IT
customer in the CIO role, Adrian brings a business-oriented perspective to security implementations.
Prior to joining Securosis, Adrian was CTO at database security firm IPLocks, Vice President of
Engineering at Touchpoint, and CTO of the secure payment and digital rights management firm
Transactor/Brodia. Adrian also blogs for Dark Reading and is a regular contributor to Information
Security Magazine. Mr. Lane is a Computer Science graduate of the University of California at
Berkeley with post-graduate work in operating systems at Stanford University.  

Securosis — Understanding and Selecting Secrets Management Platforms 	 "19

About Securosis

Securosis, LLC is an independent research and analysis firm dedicated to thought leadership, objectivity, and
transparency. Our analysts have all held executive level positions and are dedicated to providing high-value,
pragmatic advisory services. Our services include:

• The Securosis Nexus: The Securosis Nexus is an online environment to help you get your job done better
and faster. It provides pragmatic research on security topics that tells you exactly what you need to know,
backed with industry-leading expert advice to answer your questions. The Nexus was designed to be fast
and easy to use, and to get you the information you need as quickly as possible. Access it at <https://
nexus.securosis.com/>.

• Primary research publishing: We currently release the vast majority of our research for free through our
blog, and archive it in our Research Library. Most of these research documents can be sponsored for
distribution on an annual basis. All published materials and presentations meet our strict objectivity
requirements and conform to our Totally Transparent Research policy.

• Research products and strategic advisory services for end users: Securosis will be introducing a line
of research products and inquiry-based subscription services designed to assist end user organizations in
accelerating project and program success. Additional advisory projects are also available, including product
selection assistance, technology and architecture strategy, education, security management evaluations, and
risk assessment.

• Retainer services for vendors: Although we will accept briefings from anyone, some vendors opt for a
tighter, ongoing relationship. We offer a number of flexible retainer packages. Services available as part of a
retainer package include market and product analysis and strategy, technology guidance, product evaluation,
and merger and acquisition assessment. Even with paid clients, we maintain our strict objectivity and
confidentiality requirements. More information on our retainer services (PDF) is available.

• External speaking and editorial: Securosis analysts frequently speak at industry events, give online
presentations, and write and/or speak for a variety of publications and media.

• Other expert services: Securosis analysts are available for other services as well, including Strategic
Advisory Days, Strategy Consulting engagements, and Investor Services. These tend to be customized to
meet a client’s particular requirements.

Our clients range from stealth startups to some of the best known technology vendors and end users. Clients
include large financial institutions, institutional investors, mid-sized enterprises, and major security vendors.

Additionally, Securosis partners with security testing labs to provide unique product evaluations that combine in-
depth technical analysis with high-level product, architecture, and market analysis. For more information about
Securosis, visit our website: <http://securosis.com/>.

Securosis — Understanding and Selecting Secrets Management Platforms 	 "20

https://nexus.securosis.com
https://nexus.securosis.com
http://securosis.com

