
Securing APIs: The New
Application Attack Surface

 
Version 1.4	 	 	  
Released:	 April 2021

Securosis, L.L.C. 515 E. Carefree Highway Suite #766 Phoenix, AZ 85085 T 602-412-3051
info@securosis.com www.securosis.com

mailto:info@securosis.com?subject=
http://www.securosis.com

Author’s Note
The content in this report was developed independently of any sponsors. It is based on material
originally posted on the Securosis blog, but has been enhanced, reviewed, and professionally edited.

Special thanks to Chris Pepper for editing and content support.

Copyright
This report is licensed under Creative Commons Attribution-
Noncommercial-No Derivative Works 3.0.

http://creativecommons.org/licenses/by-nc-nd/3.0/us/ 

Securosis — Securing APIs	 2

Salt Security protects the APIs that form the core of
every modern application. Its API Protection

Platform is the industry’s first patented solution to
prevent the next generation of API attacks, using

machine learning and AI to automatically and
continuously identify and protect APIs. Deployed in

minutes, the Salt Security platform learns the
granular behavior of a company’s APIs and requires
no configuration or customization to pinpoint and
block API attackers. Salt Security was founded in
2016 by alumni of the Israeli Defense Forces (IDF)

and serial entrepreneur executives in the
cybersecurity field and is based in Silicon Valley and

Israel.

salt.security

This report is licensed by Salt Security.

https://salt.security
http://livepage.apple.com/
http://creativecommons.org/licenses/by-nc-nd/3.0/us/

Securing APIs

Table of Contents

Application Architecture Disrupted	 4

Modern API Security	 8

Empowering Security	 12

About the Analyst	 17

About Securosis	 18

Securosis — Securing APIs	 3

Application Architecture
Disrupted

When we think of disruption, a common image is a tornado coming through and ripping things up,
leaving towns leveled and nothing the same. But disruption can be slow and steady, incremental in
how gradually everything you thought you knew changed. Securing cloud environments was like
that, initially trying to use existing security concepts and controls, which worked well enough. Until
they didn’t, forcing a re-evaluation of everything we thought we knew about security. The changes
were (and for many still are) challenging, but overall very positive.

We see the same type of disruption in how applications
are built, deployed, and maintained in most
organizations. Macro changes include the ongoing cloud
migration disrupting the tech stack, new application
design patterns bringing microservices to the forefront,
and DevOps changing dev/release practices. As we’ve
been slowly navigating this sea change, the common
thread across these changes is increasing reliance on
Application Programming Interfaces (APIs).

For security, this new dependence on APIs changes the
source of risk: it’s not just the front end under siege from
traditional attacks and reconnaissance to map out backend processes. APIs have quickly emerged
as the most attractive and least-protected target within new applications because they have access
to critical data and services. So we decided to document this disruption and its impact on how we
need to view application security moving forward.

This paper will work through how application architecture and attack surfaces are changing, how
application security needs to evolve to deal with these disruptions, and how to empower security in
environments where DevOps rules the roost. Because that is the way.

Application Architecture Today
Let’s start with how we see application architecture evolving. There’s no one size that fits all
requirements, and it’s unlikely all these aspects apply to your current situation. But we’re confident
you will encounter these changes — it’s just a question of how much and when.

Securosis — Securing APIs	 4

APIs have quickly
emerged as the most
attractive and least-

protected target within
new applications because

they have access to
critical data and services.

• Smaller: First let’s highlight microservices. This approach breaks traditional monolithic
applications down into sets of services woven together using defined APIs. It adds
modularity (yes, we used to call it reusable components), flexibility, and consistency,
because developers don’t need to reinvent the wheel. It’s also heavily dependent on open
source components which provide the basis for many services.

• Faster: With the embrace of DevOps practices across many application teams, the
objective is to eliminate the typical walls between Development and Ops (and Security, to a
point), to create shared accountability and focus everyone on not just building but deploying
and operating applications at higher velocity and with better resilience. A key to making
DevOps work is leveraging automation to manage deployment. Automation spans from
code check-in to testing (including security tests), and ultimately through deployment into
production. How can you manage CI/CD (Continuous Integration/Continuous Deployment)
pipelines and all the ancillary services they orchestrate? Through APIs, of course!

• Cloud-Native: The computing platforms where applications run have also evolved
significantly. Given the requirements above for modularity, flexibility, and velocity, applications
need to run in a more agile infrastructure. It might be public or private cloud, containerized,
serverless, or a combination. When we say cloud-native, that can encompass all the
permutations — not just containers. Regardless, you interact with your computing platform
via (you guessed it, right?): APIs. And increasingly infrastructure is described as code, which
increases the application surface for security testing.

Another hallmark of modern application architecture is
assembling applications instead of writing them. Using
pre-built microservices to get started, building only the
components you need, enables you to weave the
application together without writing everything from
scratch. This approach democratizes technology and
enables business professionals to play a more
prominent role in building the applications they need,
potentially without the need for IT’s “help.” That’s a bit
harsh but it’s where we’re headed.

The reliance on APIs to integrate the components of
the application stack and facilitate data exchange
makes APIs a sweet target for attackers, so let’s
examine what the attack surface looks like.

The API Attack Surface
Per usual in security, protection starts with visibility. You have options to enumerate the API
environment: you can leverage an inventory (such as a Swagger file repository, if it exists) or discover
APIs via scanning and network monitoring, although monitoring offers limited API context.

Securosis — Securing APIs	 5

The reliance on APIs to
integrate the

components of the
application stack and

facilitate data exchange
makes APIs a sweet
target for attackers.

But visibility doesn’t only help you. Attackers can (and do) use the same techniques to enumerate
your API surface. Especially given that API requests and responses may travel over accessible
networks, and Swagger files are often accessible in public git repos (either intentionally for public
APIs, or inadvertently for private APIs). This breadcrumb trail provides an opportunity for attackers to
discover API parameters, and potentially access application data.

API Attacks
OWASP has done an excellent job of documenting standard API attacks in its OWASP API Security
Top 10 list. These attacks range from the simple, like randomly changing resource IDs to discover
and access other customers’ data (Insecure Direct Object Reference), to the more advanced, such
as brute force attacks, to identifying weak links in API authentication. The list also includes input
attacks meant to cause API failures, as well as traditional flaws like buffer overflows.

More complicated attacks involve gaming an application’s permission structure by invoking admin-
level APIs without proper authorization or authentication. We also see application defects such as
excessive data exposure when an API returns more data than necessary, or sends entire data sets
to the API caller. Finally we have availability attacks, such as Denial of Service against the API to
overwhelm the system.

API attacks share similarities with other application attacks: attackers can target application logic,
input, availability, or permission structure. Unfortunately, they always seem to find weak links.

Traditional Defenses Miss Modern Attacks
We are drawing analogies to traditional application security, so we need to consider how traditional
defenses work against these attacks. By traditional defenses we are talking about WAFs, API
Gateways, and managed application security services. Let’s highlight some challenges in using these
defenses against API attacks.

• WAF: Within the context of new API attacks, think of a WAF as equivalent to an email
gateway trying to stop a web-based attack. It speaks a different language. A WAF can
detect some API attacks (such as injection that’s clearly an application attack), but the proxy
architecture and limited rule sets present limitations in defending APIs.

• API Gateway: These gateways emerged to centralize API traffic for performance and
reliability. Security was mostly an afterthought, and as with WAFs they are limited in the
protection they can offer. Basic malformed requests, brute forcing attempts, and injection
attacks are simple to handle, so long as they follow well-defined patterns. But anything
aiming to enumerate API surface or exploit logic or excessive data flaws will go undetected.

• Managed Application Security Services: A new class of managed offerings has
emerged to combine WAF, DDoS protection, API gateways, and some bot mitigation, to
create a combination service. They are typically offered by CDNs or cloud providers, since
they see all the traffic anyway. Using a managed version of the previous solutions addresses
some operational issues but cannot remove limitations in the underlying technologies.

Securosis — Securing APIs	 6

https://owasp.org/www-project-api-security/
https://owasp.org/www-project-api-security/

Additionally, tactics such as application security testing
also have a place in securing APIs by scanning Swagger
files to find potential vulnerabilities and exposures. To be
clear, we are not saying these traditional approaches are
irrelevant in our new API-centric world. They are
necessary but not sufficient. It’s not a matter of either/or.
The point we’ll make through the rest of this paper is
that you need to consider API security as an additional
aspect of protecting critical applications, not just a part
of existing application security tools and processes.

Securosis — Securing APIs	 7

To be clear, we are not
saying these traditional

approaches are irrelevant
in our new API-centric

world. They are necessary
but not sufficient. It’s not a

matter of either/or.

Modern API Security

An API Security strategy requires more than traditional application security. Traditional application
security tactics, including SAST/DAST for security testing, and WAFs and API Gateways for threat
protection, are critical parts of any application security program. We need to build on existing
application security structures to protect modern applications and APIs.

So what does an API Security strategy look like? We wouldn’t be analysts if we didn’t think in terms
of process and lifecycle. We’ve practiced security for decades, and one of the only truisms which
has held up over time has been visibility, then control. There are a hundred ways to describe it, such
as “you can’t manage what you can’t see,” and they are
all true. Let’s use that prism to take a closer look at API
security, starting with visibility.

API Visibility
The key to any security visibility effort is to figure out
what data is needed, and then where you can get it. First
start with the APIs you know about, which are
documented. That leads you to the various API
specifications, which provide details on the operations
the API supports, its parameters and functions,
authentication and authorization requirements, and other
relevant information. With documented specifications
you can figure out what each API does and identify potential security issues.

The reality is that developers probably haven’t fully documented all the APIs in use, or might have
failed to keep the documentation current as the APIs change. They’re busy shipping code, don’t you
know? Kidding aside, you can make a strong case that building documentation as the API is defined
is the right way to do things, but that doesn’t always happen under the pressure of deadlines. So we
need other ways to identify API usage.

1. API Gateways: Despite the ongoing debate around whether API gateways provide real
security value, they definitely offer a central point to manage the performance,
authentication, and authorization of existing APIs, routing requests to appropriate
destinations. That means they mediate API traffic and can provide rich data about API
usage.

Securosis — Securing APIs	 8

The key to any security
visibility effort is to figure
out what data is needed,
and then where you can
get it. First start with the
APIs you know about,

which are documented.

2. Application Security Testing: Although it’s not the most efficient way to discover APIs,
you can scan each application or IP address space to enumerate available APIs and
determine which web interfaces are open and potentially exposed.

3. Passive Monitoring: Finally you can look at traffic on the network to identify and
enumerate API usage in the data you see flying past. A similar technique monitors networks
to identify endpoints, and can even perform vulnerability scanning without endpoint agents.

Once you find the APIs, it’s time to ensure data exposed through them do not violate compliance
policies or regulatory mandates. It is possible to tackle the task manually, though rarely scalable
considering the volume of API traffic and the wide range of PII in most organizations. Some API
security offerings provide a capability similar to Data Leak Prevention (DLP), identifying common
sensitive data types (SSN, Account IDs, health records IDs, cardholder numbers, and other forms of
PII) and scanning for sensitive data exposed via APIs.

Detection and classification are only the first steps. You need to figure out the proper operational
response once you discover sensitive data incorrectly
made accessible via an API. Who receives a notification,
and under what circumstances will you block an API
response? But that’s getting a bit ahead of ourselves. At
this point the focus is still on finding potential exposure
of sensitive data.

Once you have a handle on the APIs in use and any
sensitive data accessible through them, we recommend
building and maintaining a comprehensive API inventory.
New and changed APIs can be compared against this
inventory to quickly determine what changed and
whether it complies with security policies. This process is
very useful for tracking API attack surface to ensure adequate protection. Again, while it is possible
to maintain such an inventory manually, most organizations should seek the aid of tooling to
automatically maintain a current API inventory. Speaking of protecting APIs…

Securing APIs
Protection starts with understanding the threats that you face. We went through some attacks
previously, but selecting the right protection requires understanding the threat model. With the large
spectrum of business logic and data exchange APIs are designed for, as well as the
interconnectedness of modern architecture, producing threat models is often difficult or even
impossible for many organizations.

Securosis — Securing APIs	 9

Detection and classification
are only the first steps. You

need to figure out the proper
operational response once you

discover sensitive data
incorrectly made accessible
via an API. Who receives a
notification, and under what
circumstances will you block

an API response?

For API security, you need to protect against many threats including authentication and authorization
failures, denial of service, vulnerability exploits, business logic abuse, sensitive data exposure,
privacy impacts, and more. Some of these are covered in the OWASP API Security Top 10, but that
is just the tip of the iceberg. Increasingly organizations face sophisticated automated attacks such
as content scraping and credential stuffing or (throttled) brute forcing to achieve account takeover.
Such attack types do not fit the exploit patterns that traditional threat protection mechanisms such
as API gateways and WAFs are designed to catch.

You can search on “OWASP top API attacks” to find sites with detailed descriptions of the OWASP
Top 10 attacks alongside mitigation techniques, so we’ll focus on the capabilities you need to
protect against all attacks.

1. API Scanning: The first step in protecting an API is to make sure it doesn’t have API
definition issues, if the definition exists. The API security capability should also be able to
produce such API definitions based on actual traffic. Basically this capability provides a
static API scanning capability which looks for weak authentication and loose definitions for
parameters, responses, payloads, etc. This scanning capability should check APIs against
the organization’s security policies and trigger automatically within DevOps build pipelines
during deployment. Analogous to application security testing, these API scans can be either
static (looking at the API code or API definition) or dynamic (sending incorrect data to the
API to trigger misbehavior or exploitable conditions).

2. Detection and Blocking: If it looks like an attack it probably is, and an API security
solution must be able to detect and block attacks such as those described in the OWASP
API security list. To enforce a positive security approach, you may also want an API security
solution to explicitly allow only the parameters set in the API contract.

3. Anomaly Detection: Shocking as it may sound, new analytics driving better detection of
attacks still use a similar approach to network anomaly detection, which first appeared 20
years ago. These solutions use improved algorithms and analytics built for an API context.
This translates to more accurate baselines, which enable API security solutions to define
“normal” API traffic down to the user or process level. This enables detection of obfuscated,
low and slow attacks, and helps to discriminate between innocent activity and malicious
intent. As APIs change it’s essential to keep the baseline current, to maintain this context
and inform security controls, which would be unreliable without advanced analytics.

As you consider an API security solution you’ll be pulled into the age-old question of inline (requiring
a proxy or agent implemented within each micro-service or container) or out-of-band (monitoring the
infrastructure for API activity and integrating with existing proxies). Inline solutions deploy within the
application’s data path, so they can enforce policies and block attacks directly. But this means you
need to install code within each application or micro-service or instantiate additional proxies, which
incurs extra processing and inevitably adds latency.

Securosis — Securing APIs	 10

https://owasp.org/www-project-api-security/

The alternative out-of-band approach involves monitoring traffic to all APIs. These solutions discover
hidden (or unpublished) APIs through monitoring traffic, and don’t add application latency. But they
require integration with other solutions (API gateways, firewalls, etc.) to block attacks.

What about the application security defenses you already have? As discussed above, these tools
(specifically WAF and API Gateways) aren’t particularly
well suited to provide protection against the wide range
of potential API security issues. They do well enough on
simple attacks identified with signatures, particularly
attacks that target off-the-shelf software. But they lack
the application and API context (available from API
contracts and baselining API traffic) to block API attacks,
which are more sophisticated and subtle.

Finding API security issues is one matter, and stopping
an attack with runtime controls is another. But at some
point developers may need to make changes to
underlying API code to address security issues, so they

need to understand how to remediate and why these changes are important. “Because security said
so,” isn’t viable over the long term. It didn’t work well in the world of waterfall processes, and it
doesn’t work well with agile methodologies and modern development practices.

Securosis — Securing APIs	 11

But at some point developers
may need to make changes to

underlying API code to
address security issues, so

they need to understand how
to remediate and why these

changes are important.
“Because security said so,”

isn’t viable over the long term.

Empowering Security

Historically enterprises have taken baby steps to adopt new technologies; experimenting and finding
practical boundaries to meet security, reliability, and resilience requirements before fully committing.
Because companies must trade off security against speed, it often takes years for new technologies
to achieve widespread usage. But today’s businesses don’t have that luxury – the mandate is move

fast and break stuff, innovating fast enough to satisfy
customer demand.

As a result, DevOps organizations don’t play by the old
rules governing IT adoption of new technologies.
DevOps arose because corporate IT couldn’t move fast
enough. DevOps teams adopt technologies first, and
may ask for permission later. Agile methodologies and
DevOps practices promote iterating quickly and failing
fast. To hit the right balance and innovate safely,
organizations need to find a middle ground where they
can implement security as part of the tech stack. They
need to ensure adherence to security policies, including
protection of critical data, while moving fast enough to
deliver new business value in each application sprint.

The Promise of DevSecOps
Getting organizations aligned to deliver secure applications has always been problematic. Incentives
and metrics for development teams focus on delivering code on time and within budget. Security
can impact those goals by forcing changes and delaying shipment of new features. Even when
security finds an issue and prevents a crippling data breach, it’s still tough to be the bearer of bad
news. So even when security is right, they are often perceived to be wrong. More importantly, in the
eyes of the business, development is often viewed as revenue-generating, while security is an
expense.

Doesn’t DevSecOps change all that? The idea is to build security into development and deployment
processes from the start, and integrate and automate security testing directly in the pipeline, so
security becomes everyone’s business. In this manner, security shifts left (yes, another buzzword)
and happens earlier in the development cycle. In effect, DevSecOps makes the entire system more
secure, right? That’s the promise. The reality can be much murkier — especially when you start
factoring in multiple build pipelines, staffing challenges, and a mix of legacy and modern technology.

Securosis — Securing APIs	 12

Organizations need to find a
middle ground where they can
implement security as part of
the tech stack. They need to
ensure adherence to security

policies, including protection of
critical data, while moving fast

enough to deliver new
business value in each

application sprint.

Now, let’s add another factor to increase the potential impact of DevSecOps: Infrastructure as Code
(IaC). Everything is code in this world — not just applications but also APIs and infrastructure
elements such as networks, servers, load balancers, etc. These DevSecOps concepts apply to the
entirety of the tech stack. Very exciting indeed!

But once again the reality is a bit different than the promise. DevSecOps requires a genuine cultural
shift to topple the traditional walls separating Dev, Ops, and Security. Many DevSecOps initiatives
have been scuttled by politics and organizational resistance to change, particularly when there isn’t
sufficient buy-in from the top. Of course DevOps and agile development are happening, and fighting
against the future is not viable over the long term, but facing resistance to the new way of doing
things certainly complicates things in the short term.

Finally, DevSecOps doesn’t mean security becomes an equal partner. The reality remains that
security findings are still issues, and they are lumped together with new feature requests and bug
fixes when application sprints are defined. Security needs to fight to get changes included in each
sprint, and doesn’t always win.

How do these broader challenges relate back to our API
Security topic? It turns out that pretty much every
modern development initiative (yes, particularly DevOps)
uses APIs heavily. So securely coding and testing APIs is
an integral part of DevSecOps. To reach DevSecOps
utopia we need to ensure developers have adequate
training, a means to ensure there aren’t issues with the
API code or schema definitions, and automated checks
on the code as it moves through build pipelines.

There’s No Time Like Runtime
Let’s assume (however unlikely) that your DevSecOps
initiative goes perfectly. The DevOps teams get it, and they’ve instrumented the CI/CD pipeline to
ensure API security policies are tested and enforced before any code deployment. This aspect is
likely only one component of a much larger design, and it’s still only half the battle. The deployed
code is still at risk for manipulation, misuse, and business logic errors, which no amount of pre-
deployment testing can ever catch. Why? Because those gaps are evident only at runtime – they
require API execution to manifest. So what’s a security lead to do?

Deploy the tried-and-true solution: runtime security. Runtime is where you catch misuse, drift, human
error, and other issues that violate application or API security policies after deployment. You need
runtime monitoring to detect these issues. This API and application security monitoring can look an
awful lot like other monitoring techniques, though context is king for APIs even more than in other
areas. Logging and monitoring events or transactions is one thing, but piecing it all together to
provide application and API-layer context is the name of the game. You start by collecting and
aggregating data about application/API usage, and then watch for signs of misuse. And misuse can

Securosis — Securing APIs	 13

The deployed code is still at
risk for manipulation, misuse,

and business logic errors,
which no amount of pre-

deployment testing can ever
catch. Why? Because those

gaps are evident only at
runtime – they require API

execution to manifest.

only be identified by establishing baselines built from your own company’s applications and APIs.
You will need to look for clear attack patterns (Indicators of Compromise and Attack), and use
advanced analytics (machine learning) to detect when application usage varies from a typical
baseline. You then also need to distinguish anomalies that are simple user error from those indicating
malicious intent.

So what happens when you discover a security issue? Who is responsible for fixing it? Is it Ops?
Does a developer have to update the code in the template immediately? Security’s role (or lack
thereof!) in fixing security issues can cause frustration among security folks, especially when the Ops
team doesn’t perceive the same level of urgency to address the issue. As we’ve described, DevOps
happened because IT wasn’t responsive enough to the business, so DevOps teams certainly don’t
want to go back to the old ways of waiting for someone in Security to get around to fixing their stuff.
Additionally Security brings context that Dev and Ops lack, because they aren’t immersed in security
all day, every day. So it works much better when Security and DevOps can work together to address
runtime issues.

How do the two teams find a workable middle ground?
It’s a concept we call guardrails, which are security
policies the organization cannot violate. We’ve taken to
calling them a very technical term — no-no’s — because
these are things that must never happen in a production
environment. When a guardrail trips, Security is
empowered and expected to fix the issue. Everything
else goes into the normal queue of issues and defects to
address in due course by Dev or Ops during a regular
sprint.

Of course there are challenges to implementing
guardrails for APIs — security issues don’t always follow well-defined patterns. But observing
application traffic and API usage, with machine learning to detect non-standard application and API
behavior, can help define guardrails, and keep them current as the APIs change.

Another point of caution is that the no-no’s require careful consideration — they trigger a take action
now, ask questions later response which violates normal expectations and roles. For API Security we
recommend you start with the OWASP API Top 10, the most common and potentially most
damaging issues. Of course Security needs the right tooling to identify these violations at runtime
and shut them down when appropriate.

Securosis — Securing APIs	 14

How do the two teams find
a workable middle

ground? It’s a concept we
call guardrails, which are

security policies the
organization cannot

violate.

Fool Me Once...
Whether remediation happens via an automated guardrail or is performed by the Ops team, once
you address the immediate issue you need to think about taking a more strategic approach. If you
keep handling issues on a case-by-case basis, and don’t put in the work to prevent them, you will
just keep playing Whack-A-Mole during runtime. How can you squash as many of these issues as
possible, early in development, and replace the detection-and-response dance with prevention?

Sadly, developers don’t come out of the proverbial womb understanding security and safe coding.
Conversely not all security practitioners understand the inner workings of application code and
systems design. We all need to keep learning. We recommend a Security Champions program,
where developers take on additional responsibility to represent security within their DevOps teams.
This aligns with another critical role for Security in the API-centric DevOps world: providers of
guidance and education.

This training approach also works from the other perspective, where security teams get more
involved with development teams and workflows. This dual-pronged approach creates amplifying
effects which help to reduce friction between teams and improve awareness.

Any discovery of a security issue offers a teachable moment, when developers can learn how to
avoid making the same mistake again. It’s also essential to ensure that you are testing for the
security issue within the pipeline (as well as at runtime, of course), just in case it takes the developer
a few times to get it right. What’s important is that developers learn the lessons of detected security,
and security monitoring technology ensures issues are not missed next time. Security issues,
particularly incidents and breaches, also offer learning opportunities for security teams, and can be a
catalyst for scrutinizing security tool effectiveness and identifying other issues in play beyond
developer misfires, ultimately improving security processes.

Everybody in Alignment
The key to success in shipping secure code is to ensure that alignment exists within the
organization, including a collaborative relationship between Security and DevOps. It’s essential to
embrace teams’ mutual dependence to reduce friction. DevOps cannot meet its objectives without
Security, and vice versa. If these teams view themselves as adversaries instead of partners, things
will not work. This observation seems intuitive and straightforward, but human nature requires we
find someone to blame when mistakes happen. In modern IT mistakes are inevitable. Organizations
need to focus on how quickly they can detect and respond to failures. And post-mortem analysis
should focus on what went wrong rather than whom to blame.

It’s critical to make very clear that everyone is on the same team, with aligned objectives. The
organization needs these teams to deliver the most functionality possible, on time, within budget,
with strong security.

Securosis — Securing APIs	 15

With that, your objective is clear. The development and deployment of modern applications,
including a heavy dose of APIs, requires a new and different security approach. It’s about more than
just shifting left and integrating testing into the pipeline – you also need a clear understanding of the
application attack surface, so you can empower the Security team to find and address the issues
that present the greatest risk.

If you have any questions on this topic, or want to discuss your situation specifically, feel free to send
us a note at info@securosis.com. 

Securosis — Securing APIs	 16

mailto:?subject=

About the Analyst

Mike Rothman, Analyst and President
Mike’s bold perspectives and irreverent style are invaluable as companies determine effective
strategies to grapple with the dynamic security threatscape. Mike specializes in the sexy aspects of
security — such as protecting networks and endpoints, security management, and compliance.
After 20 years in and around security, he’s one of the guys who “knows where the bodies are buried”
in the space.

Starting his career as a programmer and networking consultant, Mike was an analyst at META
Group prior to founding SHYM Technology, and then held executive roles at CipherTrust and
TruSecure. Mike then started Security Incite in 2006 to provide a voice of reason in an over-hyped
yet underwhelming security industry. After taking a short detour as Senior VP, Strategy at
eIQnetworks, Mike joined Securosis with a rejuvenated cynicism about the state of security.

Mike published The Pragmatic CSO <http://www.pragmaticcso.com/> in 2007 to introduce
technically oriented security professionals to the nuances of what is required to be a senior security
professional. He also possesses a very expensive engineering degree in Operations Research and
Industrial Engineering from Cornell University. His folks are overjoyed that he uses literally zero
percent of his education on a daily basis. 

Securosis — Securing APIs	 17

http://www.pragmaticcso.com/

About Securosis

Securosis, LLC is an independent research and analysis firm dedicated to thought leadership, objectivity, and
transparency. Our analysts have all held executive level positions and are dedicated to providing high-value,
pragmatic advisory services. Our services include:

• Primary research publishing: We publish the vast majority of our research for free through our blog, and
package the research as papers that can be licensed for distribution on an annual basis. All published
materials and presentations meet our strict objectivity requirements, and follow our Totally Transparent
Research policy.

• Cloud Security Project Accelerators: Securosis Project Accelerators (SPA) are packaged consulting
offerings to bring our applied research and battle-tested field experiences to your cloud deployments. These
in-depth programs combine assessment, tailored workshops, and ongoing support to ensure you can secure
your cloud projects better and faster. They are designed to cut months or years off your projects while
integrating leading-edge cloud security practices into your existing operations.

• Cloud Security Training: We are the team that built the Cloud Security Alliance CCSK training class and our
own Advanced Cloud Security and Applied SecDevOps program. Attend one of our public classes or bring
us in for a private, customized experience.

• Advisory services for vendors: We offer a number of advisory services to help our vendor clients bring the
right product/service to market in the right way to hit on critical market requirements. Securosis is known for
telling our clients what they NEED to hear, not what they want to hear. Clients typically start with a strategy
day engagement, and then can engage with us on a retainer basis for ongoing support. Services available as
part of our advisory services include market and product analysis and strategy, technology roadmap
guidance, competitive strategies, etc. Though keep in mind, we maintain our strict objectivity and
confidentiality requirements on all engagements.

• Custom Research, Speaking and Advisory: Need a custom research report on a new technology or
security issue? A highly-rated speaker for an internal or public security event? An outside expert for a merger
or acquisition due diligence? An expert to evaluate your security strategy, identify gaps, and build a roadmap
forward? These defined projects bridge the gap when you need more than a strategy day but less than a
long-term consulting engagement.

Our clients range from stealth startups to some of the best known technology vendors and end users. Clients
include large financial institutions, institutional investors, mid-sized enterprises, and major security vendors. For
more information about Securosis, visit our website: <http://securosis.com/>.

Securosis — Securing APIs	 18

http://securosis.com

	Securing APIs: The New Application Attack Surface
	Securing APIs
	Table of Contents
	Application Architecture Disrupted
	Modern API Security
	Empowering Security
	About the Analyst
	About Securosis

